Quy đồng full:v
\(P=\frac{\Sigma\left(2x+1\right)\left(2y+1\right)}{\left(2x+1\right)\left(2y+1\right)\left(2z+1\right)}=\frac{4\left(xy+yz+zx\right)+4\left(x+y+z\right)+3}{4\left(xy+yz+zx\right)+2\left(x+y+z\right)+8xyz+1}\)
\(=\frac{4\left(xy+yz+zx\right)+4\left(x+y+z\right)+3}{4\left(xy+yz+zx\right)+2\left(x+y+z\right)+9}\). Ta sẽ chứng minh: \(2\left(x+y+z\right)+9\le4\left(x+y+z\right)+3\)(1)
\(\Leftrightarrow2\left(x+y+z\right)\ge6\Leftrightarrow x+y+z\ge3\). BĐT này đúng theo AM-GM \(x+y+z\ge3\sqrt[3]{xyz}=3\)
Do đó (1) đúng. Thay vào ta thu được \(P\ge1\)
Đẳng thức xảy r akhi x = y=z=1
Vậy..