Ôn tập góc với đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Vũ Đào Mai

cho x,y,z là 3 số thực dương thỏa mãn x+y+z=2020

cmr: \(\frac{xy}{\sqrt{xy}+2020z}+\frac{yz}{\sqrt{yz+2020x}}+\frac{xz}{\sqrt{xz+2020y}}\le1010\)

Trần Quang Hưng
4 tháng 2 2020 lúc 14:36

Thay 2020=x+y+z vao mẫu đc

\(\frac{xy}{\sqrt{xy+zx+zy+z^2}}=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{2}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)(Cauchy)

Làm tương tự mấy cái kia sau đó ghép mấy cái cũng mẫu lại là ra

Khách vãng lai đã xóa
Trần Thanh Phương
4 tháng 2 2020 lúc 15:56

\(\Sigma\left(\frac{xy}{\sqrt{xy+2020z}}\right)=\Sigma\left[\frac{xy}{\sqrt{xy+z\left(x+y+z\right)}}\right]=\Sigma\left[\frac{xy}{\sqrt{\left(y+z\right)\left(z+x\right)}}\right]\)

\(=\Sigma\left[\sqrt{\frac{xy}{y+z}\cdot\frac{xy}{z+x}}\right]\le\Sigma\left[\frac{1}{2}\cdot\left(\frac{xy}{y+z}+\frac{xy}{z+x}\right)\right]\)

\(=\frac{1}{2}\cdot\left(\frac{xy}{y+z}+\frac{xy}{z+x}+\frac{yz}{x+y}+\frac{yz}{z+x}+\frac{zx}{x+y}+\frac{zx}{y+z}\right)\)

\(=\frac{1}{2}\cdot\left[\frac{x\left(y+z\right)}{y+z}+\frac{y\left(z+x\right)}{z+x}+\frac{z\left(x+y\right)}{x+y}\right]\)

\(=\frac{1}{2}\cdot\left(x+y+z\right)=\frac{2020}{2}=1010\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{2020}{3}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
nguyen duc khoa
Xem chi tiết
Linh Vũ Đào Mai
Xem chi tiết
Hoàn Minh
Xem chi tiết
Sarah Trần
Xem chi tiết
Hoàng Nguyễn Diệu
Xem chi tiết
lê chí hiếu
Xem chi tiết
mori kudo
Xem chi tiết
lê nguyễn ngọc minh
Xem chi tiết
yến
Xem chi tiết