Thay 2020=x+y+z vao mẫu đc
\(\frac{xy}{\sqrt{xy+zx+zy+z^2}}=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{2}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)(Cauchy)
Làm tương tự mấy cái kia sau đó ghép mấy cái cũng mẫu lại là ra
\(\Sigma\left(\frac{xy}{\sqrt{xy+2020z}}\right)=\Sigma\left[\frac{xy}{\sqrt{xy+z\left(x+y+z\right)}}\right]=\Sigma\left[\frac{xy}{\sqrt{\left(y+z\right)\left(z+x\right)}}\right]\)
\(=\Sigma\left[\sqrt{\frac{xy}{y+z}\cdot\frac{xy}{z+x}}\right]\le\Sigma\left[\frac{1}{2}\cdot\left(\frac{xy}{y+z}+\frac{xy}{z+x}\right)\right]\)
\(=\frac{1}{2}\cdot\left(\frac{xy}{y+z}+\frac{xy}{z+x}+\frac{yz}{x+y}+\frac{yz}{z+x}+\frac{zx}{x+y}+\frac{zx}{y+z}\right)\)
\(=\frac{1}{2}\cdot\left[\frac{x\left(y+z\right)}{y+z}+\frac{y\left(z+x\right)}{z+x}+\frac{z\left(x+y\right)}{x+y}\right]\)
\(=\frac{1}{2}\cdot\left(x+y+z\right)=\frac{2020}{2}=1010\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{2020}{3}\)