x + y + z = 0
<=> (x + y + z)^2 = 0
<=> x^2 + y^2 + z^2 + 2(xy + yz + xz) = 0
<=> x^2 + y^2 + z^2 = -2(xy + yz + xz)
\(A=\frac{18\left(x^2+y^2+z^2\right)}{x^2+y^2-2xy+y^2+z^2-2yz+z^2+x^2-2zx}\)
\(A=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)}\)
\(A=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)