cho x,y thỏa mãn xy≥1 chứng minh rằng
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
cho các số x, y, z thỏa mãn x+y+z=\(\dfrac{3}{2}\) . chứng minh rằng x^2+y^2+z^2≥\(\dfrac{3}{4}\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Cho \(xy\ge1\). Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
a) Chứng minh: \(2016^{2015}+2018^{2016}⋮2017\)
b) Cho x, y \(\ge\)1
Chứng minh: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
Chứng minh rằng nếu x+y=1 thì x2 + y2 \(\ge\) \(\dfrac{1}{2}\)
Mong mn giúp đỡ
Câu 1: Tìm các số thực x, y thỏa mãn:
\(x^2+2y^2+-2xy-2x-4y+10=0\)
Câu 2: Tìm x thỏa mãn BĐT:
\(\dfrac{2x-1}{2-x}>1\)
Câu 3: Chứng minh rằng với \(\forall\) x,y,z thì: \(x^2+y^2+z^2\ge xy+yz+zx\)
Chứng minh rằng nếu: x+y=1 thì x2 = y2 \(\ge\) \(\dfrac{1}{2}\)
Mình đang cần gấp. Mong mn giúp đỡ ạ ^^