\(VT=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{4039}{2xy}\)
\(VT\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{4039}{2.\dfrac{1}{4}\left(x+y\right)^2}=\dfrac{8082}{\left(x+y\right)^2}\ge\dfrac{8082}{1^2}=8082\)
\(VT=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{4039}{2xy}\)
\(VT\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{4039}{2.\dfrac{1}{4}\left(x+y\right)^2}=\dfrac{8082}{\left(x+y\right)^2}\ge\dfrac{8082}{1^2}=8082\)
Cho ba số thực dương x, y, z thỏa mãn: xy+yz+zx=2017. chứng minh : \(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{3}{2}\)
cho \(x;y>\dfrac{\sqrt{5}-1}{2}\) thỏa mãn \(x+y=xy\)
tìm min\(\dfrac{1}{x^2+x-1}+\dfrac{1}{y^2+y-1}\)
Cho các số thực dương x,y thỏa mãn \(x+y>=3\). Chứng minh :\(x+y+\dfrac{1}{2x}+\dfrac{1}{2y}>=\dfrac{9}{2}\) Đẳng thức xảy ra khi nào?
Cho x;y;z>0 thỏa mãn \(x^2+y^2+z^2=3\)
chứng minh: \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Cho x,y là 2 số dương thỏa mãn: \(x+y\le1\)
Tìm Min của biểu thức: \(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}\)
Cho: x,y>0 thoả mãn x+y=1.
Chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y}-\dfrac{2}{xy}\ge16\)
cho x,y,z>0 chứng minh rằng
\(\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
a, Cho a,b > 0. Cm: \(\dfrac{1}{ab}\ge\dfrac{4}{\left(a+b\right)^2}\) b, Tìm GTNN của A=\(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\) (với x,y>0 và \(x+y\le1\)
Cho x,y thỏa mãn x,y thuộc R và 0\(\le x,y\le\dfrac{1}{2}\) chứng minh rằng \(\dfrac{\sqrt{x}}{1+y}+\dfrac{\sqrt{y}}{1+x}\le\dfrac{2\sqrt{2}}{3}\)