Lời giải:
Ta có:
\(P=\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
\(\Leftrightarrow P=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)
Áp dụng BĐT AM-GM:
\(2x+y\geq 2\sqrt{2xy}=2\sqrt{4}=4\)
Ta có:
\(P=\frac{2x+y}{2}+\frac{8}{2x+y}-\frac{5}{2x+y}\)
Áp dụng BĐT AM-GM: \(\frac{2x+y}{2}+\frac{8}{2x+y}\geq 2\sqrt{4}=4\) (1)
\(2x+y\geq 4\Rightarrow \frac{5}{2x+y}\leq \frac{5}{4}\Rightarrow -\frac{5}{2x+y}\geq \frac{-5}{4}\) (2)
Từ \((1);(2)\Rightarrow P\geq 4+\frac{-5}{4}=\frac{11}{4}\)
Vậy P min \(=\frac{11}{4}\Leftrightarrow (x,y)=(1,2 )\)