Đặt \(a=2010\).
\(\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\)(*)
Nhân cả 2 vế của (*) cho \(\sqrt{x^2+a}-x\), ta có:
\(\left(x+\sqrt{x^2+a}\right)\left(\sqrt{x^2+a}-x\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)
\(\Leftrightarrow\left(x^2+a-x^2\right)\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)
\(\Leftrightarrow a\left(y+\sqrt{y^2+a}\right)=a\left(\sqrt{x^2+a}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+a}=\sqrt{x^2+a}-x\) (1)
Tương tự tiếp tục nhân (*) cho \(\sqrt{y^2+a}-y\), ta có:
\(x+\sqrt{x^2+a}=\sqrt{y^2+a}-y\) (2)
Cộng 2 vế (1) và (2), ta được:
\(S=y+\sqrt{y^2+a}+x+\sqrt{x^2+a}=\sqrt{x^2+a}-x+\sqrt{y^2+a}-y\)
\(S=y+x+x+y=\sqrt{x^2+a}+\sqrt{y^2+a}-\sqrt{y^2+a}-\sqrt{x^2+a}\)
\(S=2x+2y=0\)
\(S=x+y=0\)