5x^2+5y^2+8xy-2x+2y=2
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
=>x=1; y=-1
M=(1-1)^2007+(1-2)^2008+(-1+1)^2009=1
5x^2+5y^2+8xy-2x+2y=2
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
=>x=1; y=-1
M=(1-1)^2007+(1-2)^2008+(-1+1)^2009=1
5x2+5y2+8xy-2x+2y+2=0
Tính M= (x+y)2007+(x-2)2008+ (y+1)2009
thuc hien phep tinh
a.\(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
b.\(\left(\dfrac{1}{x^2+1}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+1-2\right)\)
c.\(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)
d.\(\left(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\right)\)
Thực hiện các phép tính :
a) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
b) \(\left(\dfrac{2}{x-2}-\dfrac{2}{x+2}\right).\dfrac{x^2+4x+4}{8}\)
c) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
d) \(\left(\dfrac{x}{x^2-25}-\dfrac{x-5}{x^2+5x}\right):\dfrac{2x-5}{x^2+5x}+\dfrac{x}{5-x}\)
e) \(\left(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\right)\)
Cho biểu thức \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a)Tìm đkxđ và rút gọn P
b)Tìm các gtn của x,y để P=2
Rút gọn các biểu thức:
a) {\(\dfrac{1}{x^2}\) + \(\dfrac{1}{y^2}\) + \(\dfrac{2}{x+y}\)(\(\dfrac{1}{x}\) + \(\dfrac{1}{y}\))} : \(\dfrac{x^3+y^3}{x^2y^2}\)
b) {\(\dfrac{1}{\left(2x-y\right)^2}\) + \(\dfrac{2}{4x^2-y^2}\) + \(\dfrac{1}{\left(2x+y\right)^2}\)} . \(\dfrac{4x^2+4xy+y^2}{16x}\)
c) (\(\dfrac{x^2-xy}{x^2y+y^3}\) - \(\dfrac{2x^2}{y^3-xy^2+x^2y-x^3}\))(1 - \(\dfrac{y-1}{x}\) - \(\dfrac{y}{x^2}\))
giúp mk với tứ tư mk phải nộp rùi
bài 1:
a, \(2x\left(3x^2-5x+3\right)\)
b, \(-2x\left(x^2+5x-3\right)\)
c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\)
bài 2:
a,\(\left(2x-1\right).\left(x^2-5-4\right)\)
b,\(-\left(5x-4\right).\left(2x+3\right)\)
c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\)
d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\)
e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\)
bài 3:
c/m rằng gtri của biểu thức ko phụ thuộc vào gtri của biến
a,\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)
b,\(3\left(2x-1\right)-5\left(x-3\right)+6\left(3x-4\right)-19x\)
bài 4 :tìm x biết
a, \(3x+2\left(5-x\right)=0\)
b,\(x\left(2x-1\right).\left(x+5\right)-\left(2x^2+1\right).\left(x+4,5\right)=3,5\)
c,\(3x^2-3x\left(x-2\right)=36\)
d,\(\left(3x^2-x+1\right).\left(x-1\right)+x^2.\left(4-3x\right)=\dfrac{5}{2}\)
Cho các số dương x, y thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của
P = \(\left(2x+\dfrac{1}{x}\right)^2\)+ \(\left(2y+\dfrac{1}{y}\right)^2\)
Thực hiện phép tính:
a) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
b) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
c) \(\dfrac{xy}{ab}+\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}-\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)
d) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
Thực hiên phép tính:
a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
b) \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)
c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
d) \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right]:\dfrac{x-y}{x}\)