\(P=3\left(x^2+y^2\right)^2-3x^2y^2-2\left(x^2+y^2\right)+1\)
\(\ge3\left(x^2+y^2\right)^2-\dfrac{3}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)
Đặt \(x^2+y^2=a\) thì \(a\ge2\).Xét hàm \(f\left(a\right)=\dfrac{9}{4}a^2-2a+1\)
Dế thấy \(f_{(a)}\) đồng biến trên [2,+\(\infty\)] nên \(f_{Min}\)=\(f_{(2)}\)=6
Dấu = xảy ra khi x=y=1