Theo đề ta có: \(1\le y\le2\Leftrightarrow\frac{1}{y^2+1}\ge\frac{1}{2x+3}\)
Lại có: \(xy+2\ge2y\Leftrightarrow x\ge\frac{2\left(y-1\right)}{y}\ge0\)
Và: \(M=\frac{x^2+4}{y^2+1}=\left(x^2+4\right).\frac{1}{y^2+1}\ge\left(2x+3\right).\frac{1}{2x+3}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(Min_M=1\)