Lời giải:
Ta có: \(\frac{x^2+y^2}{x-y}=\frac{(x-y)^2+2xy}{x-y}=\frac{(x-y)^2+2}{x-y}\) (do $xy=1$)
\(=x-y+\frac{2}{x-y}\)
Vì \(x>y\Rightarrow x-y>0\). Áp dụng BĐT Cô-si cho 2 số dương là \(x-y; \frac{2}{x-y}\) ta có:
\(\frac{x^2+y^2}{x-y}=(x-y)+\frac{2}{x-y}\geq 2\sqrt{(x-y).\frac{2}{x-y}}=2\sqrt{2}\) (đpcm)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} xy=1\\ x-y=\frac{2}{x-y}\end{matrix}\right.\Rightarrow (x,y)=\left(\frac{\sqrt{6}+\sqrt{2}}{2}; \frac{\sqrt{6}-\sqrt{2}}{2}\right); \left(\frac{-\sqrt{6}+\sqrt{2}}{2}; \frac{-\sqrt{6}-\sqrt{2}}{2}\right)\)