\(VT^2=\left(x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)=\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)Mà VP =1
Đặt t=x2+y2
\(\Rightarrow t\left(2-t\right)\ge1\Leftrightarrow\left(t-1\right)^2\le0\Rightarrow t-1=0\)
=> t=1
Vậy M =1 khi x =y=\(\dfrac{1}{\sqrt{2}}\).