Cho x, y là hai số thực dương. Chứng minh rằng:
\(\frac{x}{y}+\frac{y}{x}\ge2\)
Khi nào có dấu bằng ?
Cho các số dương x,y,z chứng minh rằng: \(\left(1+\frac{x}{y}\right)^n+\left(1+\frac{y}{x}\right)^n\ge2^{n+1}\)
Cho x,y là hai số dương. Chứng minh rằng:
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}+\frac{x+y}{2}\le\frac{1}{4}\)
Có ba số thực dương x, y, z. Chứng minh rằng:
\(\frac{\sqrt{x}+\sqrt{y}}{z}+\frac{\sqrt{y}+\sqrt{z}}{x}+\frac{\sqrt{z}+\sqrt{x}}{y}>\frac{2}{\sqrt{x}}+\frac{2}{\sqrt{y}}+\frac{2}{\sqrt{z}}\)
cho các số thực dương x,y,z thỏa mãn xyz=1 chứng minh rằng \(\frac{x}{\sqrt{x+\sqrt{yz}}}+\frac{y}{\sqrt{y+\sqrt{zx}}}+\frac{z}{\sqrt{z+\sqrt{xy}}}\ge\frac{3}{2}\)
Cho các số thực dương thỏa mãn điều kiện:x+y+z=2008.Chứng minh rằng:\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge2008\)
1) Cho a, b, c > 0. CMR: \(a^2+b^2+c^2+abc+5\ge3\left(a+b+c\right)\)
2) Cho a, b, c > 0, đặt \(x=a+\frac{1}{b}\), \(y=b+\frac{1}{c}\), \(z=c+\frac{1}{a}\). Chứng minh rằng: \(xy+yz+zx\ge2\left(x+y+z\right)\)
3) Cho các số dương x, y, z thỏa mãn xyz = 1. Chứng minh rằng: \(x^2+y^2+z^2+x+y+z\ge2\left(xy+yz+zx\right)\)
Cho 3 số thực dương x,y,z thỏa mãn x+y+z+2=xyz . chứng minh rằng :
x+y+z+6\(\ge2\left(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\right)\)
Cho x , y , z là các số thực dương thỏa mãn x+y+z =xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)