\(\left(2a-3\right)\left(\frac{3}{4}a+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2a-3=0\\\frac{3}{4}a+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2a=3\\\frac{3}{4}a=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a=\frac{3}{2}\\a=-\frac{4}{3}\end{array}\right.\)
\(\left(2a-3\right)\left(\frac{3}{4}a+1\right)=0\)
<=> \(\left[\begin{array}{nghiempt}2a-3=0\\\frac{3}{4}a+1=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}a=\frac{3}{2}\\a=-\frac{4}{3}\end{array}\right.\)
Ta chứng minh bằng phản chứng: Giả sử các số hữu tỉ \(x\ne0\), và \(y\ne0\). Khi đó \(x.y\ne0\), mâu thuẫn với giả thiết \(x.y=0\).
Vậy nếu \(x.y=0\) chỉ có thể \(x=0\) hoặc \(y=0\).
Áp dụng: Ta có
\(\left(2a-3\right)\left(\frac{3}{4}a+1\right)=0\Rightarrow\left(2a-3\right)=0\) hoặc \(\frac{3}{4}a+1=0\)
\(2a-3=0\Rightarrow2a=3\Rightarrow a=\frac{3}{2}\)
\(\frac{3}{4}a+1=0\Rightarrow\frac{3}{4}a=-1\Rightarrow a=-1.\frac{4}{3}=\frac{-4}{3}\)
Vậy \(a=\frac{3}{2}\) hoặc \(a=\frac{-4}{3}\)