ta có : \(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\Leftrightarrow3^2-2xy=5\)
\(\Leftrightarrow9-2xy=5\Leftrightarrow2xy=9-5=4\Leftrightarrow xy=2\)
ta có : \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=\left(3\right)^3-3.2.3=27-18=9\)
vậy \(x^3+y^3=9\) khi \(x+y=3\) và \(x^2+y^2=5\)
ta có : \(\left(x+y\right)=3\)=> \(\left(x+y\right)^2=9\)
<=> \(x^2+2xy+y^2=9\)
=> \(xy=\frac{9-\left(x^2+y^2\right)}{2}=\frac{9-5}{2}=2\)
ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=5.\left(5-2\right)=5.3=15\)