chat lop 8.
x+y=1
(x-y)^2 ≥0
x^2+y^2-2xy ≥0
x^2+y^2≥2xy
x^2+y^2+2xy≥2xy+2xy
(x+y)^2≥4xy
1≥4xy
xy≤1/4
x,y>0=>xy>0
<=>1/xy≥4
(x+y)/xy≥4 ™#{1=x+y}!
1/y+1/x≥4
1/x+1/y≥4
Áp dụng BĐT Cô - si dạng Engel , ta có :
\(A=\dfrac{1}{x}+\dfrac{1}{y}\) ≥ \(\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{1}=4\)
⇒ AMIN = 4 ⇔ x = y = \(\dfrac{1}{2}\)