Cho \(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Tính \(A=\left(3x^3+8x^2+2\right)^{1998}\)
A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tính A với x=14-6\(\sqrt{5}\)
c) Tìm Min A
Rút gọn BT với \(x>0;x\ne8\)
\(P=\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)
cho x = \(\sqrt[3]{38+17\sqrt{5}}+\sqrt[3]{38-17\sqrt{5}}\)
Tính C= \(\left(x^3+3x+1935\right)2018\)
rút gọn biểu thức
P=\(\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)\)+\(\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\).\(\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+\sqrt[3]{x}}\right)\)
Tính P\(=\left(x^3+12x-9\right)^{2021}\) khi \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)
Tính giá trị biểu thức A = (\(^{3x^3}\)+ \(^{8x^2}\)+2)2009 - 32009
Với x = \(\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
cho x =\(\dfrac{7-4\sqrt{3}}{\sqrt[3]{26-15\sqrt{3}}}-\sqrt[3]{26+15\sqrt{3}}\)
tính A= \(\dfrac{x^6+x^4+4x^2}{40\left(x^4+4x^2-144\right)}\)