Chứng minh giá trị biểu thức C không phụ thuộc vào x, y:
C = \(\frac{1}{\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}-\frac{\sqrt{x+y}}{\sqrt{x}+\sqrt{y}}\right)}-\frac{x+y}{2\sqrt{x}\sqrt{y}}-\frac{\sqrt{\left(x+y\right)^4}}{4xy}\) (x,y>0)
Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.
Cho biểu thức: \(B=\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\) với \(x\ge0;x\ne4;9\)
a, Rút gọn biểu thức B
b, Tìm x để B < 0
c, Tìm GTNN của B
Cho biểu thức \(M=\left(\frac{3}{\sqrt{x}+1}-\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right)\). Tập hợp giá trị của x sao cho \(\left(\sqrt{x}+1\right)\times M=x-2\sqrt{x}+10+\sqrt{x-4}\)là...
Cho biểu thức :
\(B=\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\frac{2-2\sqrt{x}}{\sqrt{x}}\)
với x > 0 và x ≠ 1
a, Rút gọn B
b, Tính giá trị của B khi :
1, \(x=\frac{1}{1+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{100}}\)
2, x là nghiệm của phương trình : \(\sqrt{x^2-x+2}=x\)
3, x là nghiệm của phương trình : \(\left|x-1\right|=\left|2x-5\right|\)
4 , x là giá trị làm cho biểu thức \(P=x-4\sqrt{x}+6\) đạt GTNN
\(P=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}+1}{x+2\sqrt{x}+1}\right)\)
a) Rút gọn
b) Tìm x thuộc Z để P<0
Bài 1: Cho các số thực dương a,b ; a≠b. Chứng minh:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
Bài 2: Cho các biểu thức; \(P=\frac{5x-12\sqrt{x}-32}{x-16}\) và \(Q\left(x\right)=x+\sqrt{x}+3\).
a) Tìm số nguyên x0 sao cho P(x0) và Q(x0) là các số nguyên, đồng thời P(x0) và ước của Q(x0)
b) Cho \(t=\frac{x}{x^2-x+1}\). Tính giá trị biểu thức \(A=\frac{x^2}{x^4+x^2+1}\) theo t
Bài 3: Cho biểu thức:
\(T=\left(\frac{x+4\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{x+\sqrt{x}}{1-x}\right):\left(\frac{1}{\sqrt{x}+1}-\frac{1}{1-\sqrt{x}}\right)\left(x>0;x\ne1\right)\)
Rút gọn biểu thức T. Có bao nhiêu giá trị của x để \(A\ge\frac{1+\sqrt{2018}}{\sqrt{2018}}\)
\(A=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\) : \(\left(\frac{x-2}{x-\sqrt{x}-2}-1\right)\)
a) Rút gọn biểu thức A
b) Tìm x để P = 2.A - \(\frac{1}{x}\)đạt giá trị lớn nhất
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)