\(cos\varphi=\frac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}=\frac{-1.2+3.1}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{2^2+1^2}}=\frac{1}{5\sqrt{2}}\)
\(cos\varphi=\frac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}=\frac{-1.2+3.1}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{2^2+1^2}}=\frac{1}{5\sqrt{2}}\)
mn ơi giúp mik với ,ai biết làm thì làm hết hộ mik nha còn ko làm hết được làm hộ mik 1 trong mấy
câu đó th T-T
1 Cho 8 điểm A , B, C, D , E , F , G ,H . CMR
vec tơ AC + vec to BF + vec tơ GD + vec tơ HE = vec tơ AD + vec tơ BE + vec tơ GC + vec tơ HF
2 Cho tam giác ABC , từ A , B , C dựng 3 vec tơ tùy ý vec tơ AA' , vec tơ BB' , vec tơ CC'
CMR : vec tơ AA' + vec tơ BB' + vec tơ CC' = vec tơ BA' + vec tơ CB' + vec tơ AC'
3 Gọi O là tâm của hbh ABCD , CMR :
a) vec tơ DO + vec tơ AO = vec tơ AB
b) vec tơ OD + vec tơ OC = vec tơ BC
c ) vec tơ OA + vec tơ OB + vec tơ OC + vec tơ OD = vec tơ 0
d) vec tơ MA + vec tơ MC = vec tơ MB + vec tơ MD ( với M là 1 điểm tùy ý )
help me
Cho \(\Delta\)ABC có trọng tâm G. gọi D và E là các điểm xác định bởi \(\overrightarrow{AD}=2\overrightarrow{AB}\), \(\overrightarrow{AE}=\dfrac{2}{5}\overrightarrow{AC}\)
a/ Phân tích vec-tơ \(\overrightarrow{AG},\overrightarrow{DE,}\overrightarrow{DG}\) theo vec-tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b/ Chứng minh rằng: D,E,G thẳng hàng
c/ Từ B kẻ bx// AC, Bx cắt DG tại I. Chứng minh \(\overrightarrow{BI}=\dfrac{1}{5}\overrightarrow{BC}+\dfrac{1}{5}\overrightarrow{AB}\)
giúp mik ba bài này với ^-^
1. Cho hình chữ nhật ABCD có AB = 3a , AD = 4a
a) Tính / vec tơ AD - vec tơ AB / b) Dựng vec tơ u = vec tơ CA - vec tơ AB . Tính / vec tơ u /
2. Cho △ABC đều cạnh a . Gọi I là trung điểm BC
a) Tính / vec tơ AB - vec tơ AC / b) Tính / vec tơ BA - vec tơ BI /
3. Cho △ABC vuông tại A . Biết AB = 6a , AC = 8a . Tính / vec tơ AB - vec tơ AC /
giải hộ mik bài này với
Cho △ABC . Hãy xác định điểm M sao cho :
a) vec tơ MA - vec tơ MB + vec tơ MC = vec tơ 0 b) vec tơ MB - vec tơ MC + vec tơ BC = vec tơ 0
c) vec tơ MB - vec tơ MC + vec tơ MA = vec tơ 0 d) vec tơ MA - vec tơ MB - vec tơ MC = vec tơ 0
e) vec tơ MC + vec tơ MA - vec tơ MB + vec tơ BC = vec tơ 0
Cho hình bình hành ABCD, J là trung điểm BC, K thỏa 2 vectơ KB = - vectơ AK
a) Phân tích vec tơ DJ, vectơ DK theo hai vec tơ AB,BD
b) chứng jinh: D,K,J thẳng hàng
c) G là trọng tâm tam giác ABC.Phân tích vectơ AG theo vectơ AB,AD
Cho tam giác ABC có G là trọng tâm, E thuộc cạnh AC sao cho : \(\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{EC}=\dfrac{2}{5}\overrightarrow{AC}\) , D đối xứng A qua B
a) Xác định và dựng điểm E
b) Chứng minh rằng : \(\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
c) Phân tích vectơ \(\overrightarrow{DG}\), \(\overrightarrow{DE}\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\). Chứng minh ba điểm D, G, E thẳng hàng
giải pt
a) \(3+2\sqrt{x-x^3}=3\left(\sqrt{x}+\sqrt{1-x}\right)\)
b) \(x+\sqrt{4x-x^3}=4+3\left(x-2\right)\sqrt{4x-x^3}\)
c) \(\sqrt{1-x}+\sqrt{4-x}\left(1+\sqrt{x+1}\right)=5\)
d) \(\sqrt{3+x}-\sqrt{18+3x-x^2}=3-\sqrt{6-x}\)
e) \(\sqrt{x+1}+\sqrt{4-x}\left(1+\sqrt{x+1}\right)=5\)