Xét 2 tam giác ABC và A'B'C' bất kì.
Có: \(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\left(\overrightarrow{AG}+\overrightarrow{GA'}\right)+\left(\overrightarrow{BG}+\overrightarrow{GB'}\right)+\left(\overrightarrow{CG}+\overrightarrow{GC'}\right)\)
\(=\overrightarrow{0}+\left(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\right)=3\overrightarrow{GG'}\)
Áp dụng có:
\(\overrightarrow{OO}+\overrightarrow{AC}+\overrightarrow{BD}=3\overrightarrow{GG'}\)
\(\Leftrightarrow\overrightarrow{GG'}=\frac{1}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BD}\)
#Walker