Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O, R) có BC là đường kính và AC=R. Kẻ dây AD vuông góc với BC tại H.
1) Tính độ dài các cạnh AB, AH theo R;
2) Chứng minh rằng HA.HD=HB.HC;
3) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, cắt AB ở N. Chứng minh ba điểm N, C, D thẳng hàng;
4) Chứng minh AI là tiếp tuyến của đường tròn (O, R).
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O). Gọi D là trung điểm OC. Tia AD cắt đường tròn (O) tại M. Tia AC cắt tia BM tại N. a. Chứng minh tứ giác ABMC nội tiếp đường tròn b. Chứng minh NA.NC = NB.NM
Cho nửa đường tròn tâm O đường kính AB=2R. Gọi C là 1 điểm tùy ý trên nửa đường tròn (O) sao cho AC>BC (A, B khác C). Qua O kẻ đường thẳng vuông góc với AB cắt dây AC tại D. a) Chứng minh tứ giác BCDO nội tiếp b) Chứng minh AD.AC=AO.AB c) Vẽ tiếp tuyến tại C của đường tròn (O). Từ D vẽ đường thẳng song song với AB cắt tiếp tuyến này tại E. Chứng minh AD//OE.
Cho đường tròn (O) có 2 đường kính AB và CD vuông góc với nhau. Gọi M là một điểm trên cung nhỏ BC (M khác B,C) và I là giao điểm của AM với CD
a) Chứng minh tứ giác OIMB nội tiếp đường tròn
b) Chứng minh hai tam giác AIC và ACM đồng dạng
c) Gọi K là điểm đối xứng của I qua BC. Chứng minh ba điểm B, M, K thẳng hàng.
Mọi người làm giúp em câu c thôi ạ!
Cho tam giác ABC nội tiếp đường tròn tâm o. có 3 đường cao AD, BE, CF cắt nhau tại H. a)Chứng minh: BDHF và BFEC là tứ giác nội tiếp b) EF cắt BC tại G. Chứng minh: FC là phân giác góc EFD và BD.CG=BG.CD d) M,N là hình chiếu của H lên DF và EF, giao điểm MN và AH là I, EI và DF cắt nhau tại K. CM I là trung điểm của
Cho (O;R) và 1 điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM,AN với (O) (M,N tiếp điểm). Trên nửa mặt phẳng bờ AO chứa N vẽ cát tuyến ABC của (O) sao cho AB < AC, gọi I là trung điểm của BC, MN cắt AC tại K.
a) C/m AMOI là tứ giác nội tiếp.
b) C/m OA vuông góc với MN tại H và AK.AI=AM2
c) AO cắt (O) tại 2 điểm P,Q ( AP < AQ). Gọi D là trung điểm của HQ. Đường thẳng qua H và vuông góc với MD cắt MP tại E. C/m △MHE ∼ △QDM và P là trung điểm của ME.
Giúp mình với ạ, Cảm ơn!
1. Cho đường tròn (O) đường kính AB và dây CD vuông góc với AB tại F. Trên cung BC lấy điểm M. nối A với M cắt CD tại E
a. Chứng minh AM là phân giác của góc CMD
b. Chứng minh tứ giác EFBM nội tiếp
c. Chứng minh AC2=AE.AM
d. Gọi giao điểm CB với AM là N; MD với AB là I. Chứng minh NI//CD
e. Chứng minh N là tâm đường tròn nội tiếp tam giác CIM
Help me ~ . ~