cho tứ giác ABCD nội tiếp đường tròn tâm O. biết phân giác trong của \(\widehat{BAD}\) và \(\widehat{ABC}\) cắt nhau tại E trên cạnh CD.
1. CM: AD+BC=CD
2. cho \(\dfrac{CD}{CB}=k\) (k>1). tính tỉ số diện tích ΔADE và ΔBCE
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho đường tròn tâm O bán kính R. hai đường kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung nhỏ BC, vẽ tiếp tuyến tại E của đường tròn O cắt AB tại I. DE cắt AB tại F.K là đểm thuộc đường thẳng IE sao cho KF vuông góc với AB
a)Chứng minh tứ giác OKEF nội tiếp
b)Chứng minh \(\widehat{OKF}=\widehat{ODF}\)
c)Chứng minh DE.DF=2\(R^2\)
d)Gọi M là giao điểm của OK với CF tính tan\(\widehat{MDC}\) khi \(\widehat{EIB}\)=45 độ
Cho tam giác ABC nội tiếp (O), H là trực tâm, AH cắt (O) tại E. Kẻ đường kính AOF. Chứng minh:
a) Tứ giác BCEF là hình thang cân
b) \(\widehat{BAE}=\widehat{CAF}\)
c) Gọi I là trung điểm của BC. Chứng minh: H, I, F thẳng hàng
cho đường tròn (O), từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC với đường tròn (B,C là các điểm).Gọi H là giao điểm của AO và BC, I là trung điểm của BH. Đường thẳng qua I vuông góc với OB cắt (O) tại hai điểm D,K(D thuộc cung nhỏ BC).Tia AD cắt đường tròn (O) tại điểm thứ hai E.DK cắt BE tại F
a/ Chứng minh ICEF là tứ giác nội tiếp
b/Chứng minh \(\widehat{DBH}=2\widehat{DKH}\)
c/CMR BD.CE=BE.CD và \(BF.CE^2=BE.CD^2\)
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Đường thẳng AO cắt (O) tại điểm M khácA. Đường thẳng qua C vuông góc với AB cắt (O) tại N khác C. Gọi K là giao của MN với BC.a) Chứng minh tam giác KCN cânb) Chứng minh OK vuông góc với BMc) Khi tam giác ABC cân tại A, 2 tiếp tuyến của (O) tại M và N cắt nhau tại P. Chứng minh P, B, Othẳng hàng
\(Bài 4: Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là giao điểm của AO và BC, K là trung điểm của HB. Đường thẳng AK cắt đường tròn tại M và N( M nằm giữa A và N). Kẻ OI vuông góc với MN (I thuộc MN). Chứng minh a. Tứ giác OHKI nội tiếp b. AB² = AM. AN. Từ đó suy ra AB² + IM² =AI² c. CI = 3BI Read more: https://dethihocki.com/de-ki-2-lop-9-mon-toan-phong-gd-quang-ngai-2019-a14680.html#ixzz6FDyVDHYX\)
Từ điểm A nằm ngoài (O), kẻ hai tiếp tuyến AB, AC với (O) (B, C là tiếp điểm)
a) Chứng minh tứ giác ABOC nội tiếp. Xác định tâm của đường tròn,
b) Gọi D là trung điểm của đoạn AC. Đoạn thẳng BD cắt (O) tại E. Tia AE cắt (O) tại F.
c) Gọi H là giao điểm của OA và BC. CM: \(\widehat{DHC}\) = \(\widehat{DEC}\)
cho tam giác ABC vuông tại C có \(\widehat{A}< \widehat{B}\). gọi I, O thứ tự là tâm đường tròn nội tiếp, ngoại tiếp ΔABC. biết ΔBIO vuông . tính tỉ số các cạnh của ΔABC