Gọi K là trung điểm của BG
MK là đường trung bình của ΔABG nên MK//AG
Xét ΔMKN có
I là trung điểm của MN
G là trung điểm của KN
=>IG là đường trung bình
=>IG//MK
=>A,I,G thẳng hàng
Gọi K là trung điểm của BG
MK là đường trung bình của ΔABG nên MK//AG
Xét ΔMKN có
I là trung điểm của MN
G là trung điểm của KN
=>IG là đường trung bình
=>IG//MK
=>A,I,G thẳng hàng
cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của BD và AC, M là trung điểm của EF, G là trọng tâm của tam giác BCD. Chúng minh A, M,G thẳng hàng
B1: Cho tam giác ABC , BM và CN là hai đường trung tuyến cắt nhau tại G . Gọi I,K thứ tự là trung điểm của GB và GC a) Cm : MN=IK và MN // IK b) tìm điều kiện của tam giác ABC để tứ giác MNBC là hình thang cân B2: cho hình thang ABCD (AB//CD). Trên cạnh AD lấy 2 điểm M,N sao cho AM=MN=ND. Từ M và N kẻ các đường thẳng // với hai đáy của hình thang và cắt BC theo thứ tự tại P,Q a)cm: BP=PQ=QC b) biết AB = 5cm,NQ =9cm. Tính MP và DC Giúp mình với gấp ạ 1 câu cũng đc :33
Cho tứ giác ABCD . Gọi A', B', C', D' thứ tự là trọng tâm của tam giác BCD, tam giácCDA, tam giác DAB, tam giác ABC và E, F là trung điểm của hai đường chéo AC, BD. chứng minh các đường thẳng AA', BB', CC', DD' và EF' đồng quy
giải giúp mình bài này nhé:
cho tứ giác ABCD không là hình thang và có AB=CD, AC cắt BD tại O. gọi M và N ần lượt là trung điểm của AD và BC. Đoạn thẳng MN lần lượt cắt các đoạn thẳng AC và BD tại I và K. Chứng minh tam giác OIK là tam giác cân
cho tứ giác ABCD. gọi M, N theo thứ tự là trung điểm của AD,BC. I là trung điểm của MN, G là giao điểm của AI và DN. chứng minh : G là trọng tâm của tam giác BCD
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 4: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 5: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 2: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 3: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB, AC.
a) Chứng minh MN là đường trung bình của tam giác ABC.
b) Chứng minh tứ giác MNCB là hình thang cân.
c) Cho BC = 6cm. Tính MN.
Cho hình thang ABCD(AB//CD).Gọi E,F là trung điểm của AD và BC.Phân giác của A và B. Cắt EF theo thứ tự ở I và K.
a,Chứng minh :tam giác AIE và tam giác BKF là tam giác cân
b,Chứng minh : tam giác AID và tam giác BKC là các tgv
c,Chứng minh : IE=1/2AD và KF=1/2BC
d,Cho AB=5cm,CD=18cm,AD=6cm,BC=7cm,Tính IK=?
Hình thang ABCD có đáy AB, CD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC.
Chứng minh rằng ba điểm E, I, F thẳng hàng ?