Bài 1: Đa giác. Đa giác đều

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 20:44

1: Xét ΔCAB có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔCAB

=>FE//AB và \(FE=\dfrac{AB}{2}\)

Xét ΔDAB có

G,H lần lượt là trung điểm của DA,DB

=>GH là đường trung bình của ΔDAB

=>GH//AB và \(GH=\dfrac{AB}{2}\)

GH//AB

FE//AB

Do đó: GH//FE

Ta có: \(GH=\dfrac{AB}{2}\)

\(FE=\dfrac{AB}{2}\)

Do đó: GH=FE

Xét tứ giác EFGH có

GH=FE

GH//FE

Do đó: EFGH là hình bình hành

2: AB=CD
mà AB=8cm

nên CD=8cm

Xét ΔADC có

G,F lần lượt là trung điểm của AD,AC

=>GF là đường trung bình của ΔADC

=>GF//DC và \(GF=\dfrac{DC}{2}=4cm\)

GF//DC

DC\(\perp\)AB

Do đó: GF\(\perp\)AB

Ta có: GF\(\perp\)AB

AB//GH

Do đó: GH\(\perp\)GF

Xét hình bình hành GHEF có GH\(\perp\)GF

nên GHEF là hình chữ nhật

=>\(S_{GHEF}=GH\cdot GF=\dfrac{AB}{2}\cdot\dfrac{CD}{2}=4\cdot4=16\left(cm^2\right)\)


Các câu hỏi tương tự
Nguyễn Khoa Nghị
Xem chi tiết
Nguyễn Linh Giang
Xem chi tiết
bao ho
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thảo Hiền
Xem chi tiết
Đỗ Thu Hà
Xem chi tiết
Trang
Xem chi tiết
Trang
Xem chi tiết
Tô Thu Huyền
Xem chi tiết