Cho khối tứ diện đều ABCD cạnh bằng a. Gọi A', B', C', D' lần lượt là trọng tâm của tam giác BCD, ADC, DAB, ABC
a) Chứng minh A'B'C'D' cũng là khối tứ diện đều
b) Tính \(V_{A'B'C'D'}\) theo a
Cho hình lăng trụ đứng tam giác ABC.A'B'C' có tất cả các cạnh đều bằng a :
a) Tính thể tích khối tứ diện A'BB'C
b) Mặt phẳng đi qua A'B' và trọng tâm tam giác ABC, cắt AC và BC lần lượt tại E và F. Tính thể tích hình chóp C.A'B'FE
Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD, SA vuông góc với đáy, SA = SB = a, \(AD=a\sqrt{2}\). Gọi E và F lần lượt là trung điểm của AD và SC, I là giao điểm của AC và BE
a) Tính thể tích tứ diện FBIC
b) Tính thể tích tứ diện SBIF
c) Tính thể tích hình chóp B.SAIF
Cho khối chóp S.ABC có thể tích bằng V. Gọi B' và C' lần lượt là trung điểm của SB và SC. A' nằm trên SA' sao cho \(\overrightarrow{SA}=3\overrightarrow{SA'}\). Tính thể tích khối chóp S.A'B'C' theo V ?
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a, hình chiếu vuông góc của S lên mặt phẳng đáy là điểm H sao cho :
\(\overrightarrow{AH}=\dfrac{1}{3}\overrightarrow{AC};SH=\dfrac{4}{3}a\)
a) Tính thể tích khối chóp S.ABCD
b) Gọi AI là đường cao của tam giác ASC. Chứng minh rằng I là trung điểm của SC và tính thể tích khối tứ diện ABSI ?
Cho khối hộp ABCD.A'B'C'D' có thể tích bằng V, I là giao điểm các đường chéo của nó. Mặt phẳng (P) đi qua I và cắt các cạnh bên của khối hộp chia khối hộp đó thành hai khối đa diện. Tính thể tích của mỗi khối đa diện đó theo V ?
Cho tứ diện ABCD. Gọi \(h_A,h_B,h_C,h_D\) lần lượt là các đường cao của tứ diện xuất phát từ A, B, C, D và r là bán kính mặt cầu nội tiếp tứ diện. Chứng minh rằng :
\(\dfrac{1}{h_A}+\dfrac{1}{h_B}+\dfrac{1}{h_C}+\dfrac{1}{h_D}=\dfrac{1}{r}\)
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của A'B', N là trung điểm của BC
a) Tính thể tích khối tứ diện ADMN
b) Mặt phẳng (DMN) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A, (H') là khối đa diện còn lại. Tính tỉ số \(\dfrac{V_{\left(H\right)}}{V_{\left(H'\right)}}\) ?