Cho hình hộp ABCD.A'B'C'D'. Gọi E và F theo thứ tự là trung điểm của các cạnh BB' và DD'. Mặt phẳng (CEF) chia khối hộp trên làm hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó ?
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Gọi M, N và E theo thứ tự là trung điểm BC, CC' và C'A'. Đường thẳng EN cắt đường thẳng AC tại F, đường thẳng MN cắt đường thẳng B'C' tại L. Đường thẳng FM kéo dài cắt AB tại I, đường thẳng LE kéo dài cắt A'B' tại J
a) Chứng minh rằng các hình đa diện IBM.JB'L và A'EJ.AFI là những hình chóp cụt
b) Tính thể tích khối chóp F.AIJA'
c) Chứng minh rằng mặt phẳng (MNE) chia khối lăng trụ đã cho thành hai khối đa diện có thể tích bằng nhau
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của A'B', N là trung điểm của BC
a) Tính thể tích khối tứ diện ADMN
b) Mặt phẳng (DMN) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A, (H') là khối đa diện còn lại. Tính tỉ số \(\dfrac{V_{\left(H\right)}}{V_{\left(H'\right)}}\) ?
Cho khối chóp S.ABCD có thể tích bằng 27, đáy ABCD là hình thang có AB//CD và AB = 2CD. Gọi M là trung điểm của cạnh SA, N là điểm thuộc cạnh BC sao cho NB = 2NC. Mặt phẳng (DMN) chia khối chóp S.ABCD thành hai khối đa diện, thể tích khối đa diện chứa đỉnh A bằng
Cho hình chóp tam giác O.ABC có cạnh AB = a. Các cạnh bên SA, SB, SC tạo với đáy một góc \(60^0\). Gọi D là giao điểm của SA với mặt phẳng qua BC và vuông góc với SA.
a) Tính tỉ số thể tích của hai khối chóp S.DBC và S.ABC
b) Tính thế tích của khối chóp S.DBC
Cho hình lăng trụ đứng tam giác ABC.A'B'C' có tất cả các cạnh đều bằng a :
a) Tính thể tích khối tứ diện A'BB'C
b) Mặt phẳng đi qua A'B' và trọng tâm tam giác ABC, cắt AC và BC lần lượt tại E và F. Tính thể tích hình chóp C.A'B'FE
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a, hình chiếu vuông góc của S lên mặt phẳng đáy là điểm H sao cho :
\(\overrightarrow{AH}=\dfrac{1}{3}\overrightarrow{AC};SH=\dfrac{4}{3}a\)
a) Tính thể tích khối chóp S.ABCD
b) Gọi AI là đường cao của tam giác ASC. Chứng minh rằng I là trung điểm của SC và tính thể tích khối tứ diện ABSI ?
Cho khối chóp S.ABC có thể tích bằng V. Gọi B' và C' lần lượt là trung điểm của SB và SC. A' nằm trên SA' sao cho \(\overrightarrow{SA}=3\overrightarrow{SA'}\). Tính thể tích khối chóp S.A'B'C' theo V ?
Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với đáy một góc \(60^0\). Gọi M là trung điểm SC. Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF ?