\(S_{OMN}=\frac{a^2\sqrt{3}}{4}\Rightarrow OM=MN=a\)
Gọi P;Q lần lượt là trung điểm của AB, CD \(\Rightarrow\frac{MN}{PQ}=\frac{SM}{SP}=\frac{2}{3}\) (theo tính chất trọng tâm và định lý talet)
\(\Rightarrow AB=PQ=\frac{3}{2}MN=\frac{3a}{2}\)
Trong tam giác vuông OPM, ta có \(OM^2=OP^2+MP^2\)
\(\Rightarrow MP=\sqrt{OM^2-OP^2}=\sqrt{OM^2-\left(\frac{AB}{2}\right)^2}=\frac{a\sqrt{7}}{4}\)
Mà \(MP=\frac{1}{3}SP\) (t/c trọng tâm) \(\Rightarrow SP=\frac{3a\sqrt{7}}{4}\)
\(\Rightarrow SA=\sqrt{SP^2-AP^2}=\sqrt{SP^2-\left(\frac{AB}{2}\right)^2}=\frac{3a\sqrt{6}}{4}\)
Bạn tự thay vào tính V nhé