AB vuông góc BC
AB vuông góc BD
=>AB vuông góc (BCD)
=>AB vuông góc CD
BC vuông góc CD
AB vuông góc CD
=>CD vuông góc (BCA)
=>CD vuông góc BH
=>(BH;CD)=90 độ
AB vuông góc BC
AB vuông góc BD
=>AB vuông góc (BCD)
=>AB vuông góc CD
BC vuông góc CD
AB vuông góc CD
=>CD vuông góc (BCA)
=>CD vuông góc BH
=>(BH;CD)=90 độ
Cho tứ diện ABCD có AB vuông góc với mặt phẳng (BCD).BCD là tam giác vuông tại C và BC=a,CD=2a.H là điểm trên BD với BH=x.Định x để AD vuông góc với CH
Cho tứ diện ABCD đáy ΔABC cân, DA \(\perp\) đáy, AB=AC=a, BC = \(\dfrac{6}{5}\)a. M là trung điểm BC. Vẽ AH \(\perp\)MD. (H thuặc đường thẳng MD)
a) C/M AH \(\perp\) (BCD)
b, Cho AD = \(\dfrac{4}{3}\)a. Tính (\(\widehat{AC,DM}\))
c, Gọi G1, G2 lần lượt là các trọng tâm của tam giác ABC và tam giác DBC. CM: G1G2 \(\perp\)(ABC)
Cho tứ diện ABCD có AB=CD, BC=DA. Gọi M, N theo thứ tự là trung điểm của CA, BD.
Chứng minh rằng MN là đoạn vuông góc chung của các đường thẳng CA và BD
cho hình lập phương ABCD.A'B'C'D' có cạnh a. Gọi O là tâm ABCD; M,N lần lượt là trung điểm AB,AD.
1. BD vuông góc (ACC'A') và A'C vuông góc(BDC'), A'C vuông góc AB', (BDC') vuông góc(ACC'A') và (MNC) vương góc (ACC'A')
2. Tính d(C,(BDC')),d(C,(MNC'))
3. Tính tan(AC,(MNC')) và tan((BDC'),(ABCD))
4. Tính cosin((MNC'),(BDC'))
5. Tính d(AB',BC')
Cho hình chóp Sabcd có đáy abcd là hình thang vuông tại a và b, biết ab=bc=a, sa=\(\frac{2a\sqrt{3}}{3}\), sa vuông góc với (abcd) , góc giữa đường thẳng sd và (abcd) bằng 30
Chứng minh rằng cd vuông góc (sac)Tính góc hợp bởi hai mp (scd) và (abcd)Điểm n thuộc sb sao cho nb=2sn. Tính khoảng cách từ n đến (scd)Cho lăng trụ ABCDA'B'C'D' , ABCD là hình chữ. AB = 2a, AD = 2a\(\sqrt{\text{3}}\), A'O vuông góc với (ABCD) với O là giao điểm của AC và BD. (AA', (ABCD)) = 60o
a, Tính AA'
b, (A'C,(A'BD))
c, (A'O,(A'CD))
d, (A'I,(ABB'A')) với I là trung điểm CD
Cho lăng trụ đứng ABCA'B'C' có đáy là tam giác vuông cân tại A với AB = AC = a, A'B tạo với đáy 1 góc α biết tanα = 2
a, Tính AA'
b, Tính (A'B; (BCC'B'))
c, Tính (C'B; (A'B'BA))
Cho tứ diện ABCD có 3 góc vuông tại A . Dựng AH ⊥ (BCD) (H ∈ (BCD))
1)CMR : AB⊥(ACD) , 2)CMR : CD⊥(ABH)
2)CMR:CH ⊥ BD . Từ đó suy ra H là trực tâm của tam giác BCD
Cho hình chóp S.ABCD có SA vuông góc với mp đáy (ABCD) và ABCD là hình thang vuông tại A, đáy lớn AB, AB=2a, AD=CD=a. Gọi H là hình chiếu vuông góc của A lên SC và E là trung điểm của AB
a, CMR: (SCD) \(\perp\)(SAD) và AH \(\perp\)(SBC)
b, Biết góc giữa 2 mp (SCD) và (ABCD) bằng 300. Tính góc giữa 2 mp (SAD) và (SCE)?