Cho a,b là các số dương sao cho:
\(\dfrac{a-b\sqrt{3}}{b-c\sqrt{3}}\) là số hữu tỉ
C/m: b\(^2\) = ac
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
1. Cho a,b,c là những số hữu tỉ khác 0, a=b+c
CM: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là 1 số hữu tỉ
2. Cho a,b,c là 3 số hữu tỉ khác nhau đôi một
CM: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(a-c\right)^2}}\) là một số hữu tỉ
3. Cho a,b,c là 3 số hữu tỉ thỏa mãn ĐK ab+bc+ca=1
CM: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là một số hữu tỉ
4. Rút gọn các biểu thức
a) \(\sqrt{4-4a+a^2}-2a\)
b)\(2b-\frac{\sqrt{b^2-4b+4}}{b-2}\)
c) \(\frac{\sqrt{4x^2-4x+1}}{2x-1}-1\)
Tìm các số hữu tỉ a và b sao cho
\(x=\sqrt{6+\sqrt{2\sqrt{5-\sqrt{13+4\sqrt{3}}}}}\) là 1 nghiệm của phương trình \(x^3+ax^2+bx+1=0\)
Bài 1 : Tìm phần nguyên của số a biết \(a=\sqrt{2}+\sqrt[3]{\dfrac{3}{2}}+\sqrt[4]{\dfrac{4}{3}}+...+\sqrt[n+1]{\dfrac{n+1}{n}}\)
Bài 2 : Cho \(x=\dfrac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}};y=\dfrac{2}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\).Tính xy^3 - x^3y
Bài 3 CMR \(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{2000}}}}< 3\)
Bài 4 Tồn tại hay không các số hữu tỉ a,b,c,d sao cho \(\left(a+b\sqrt{2}\right)^{1994}+\left(c+d\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
Bài 5 CMR nếu a,b,c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ thì \(\sqrt{a},\sqrt{b},\sqrt{c}\) là các số hữu tỉ
Các bạn giúp mk nha đg cần gấp,làm đc bài nào thì cmt ở dưới nha
1 . cho a , b , c là các số hữu tỉ , a ≠ b≠ c , a = b + c
chứng minh : \(\sqrt{\dfrac{1}{a^2}}+\sqrt{\dfrac{1}{b^2}}+\sqrt{\dfrac{1}{c^2}}\) là một số hữu tỉ
2 . cho a , b , c là các số hữu tỉ , a khác b khác c
chứng minh : \(\sqrt{\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}}\) là một số hữu tỉ
3 . cho a , b , c là các số hữu tỉ , ab + bc + ca = 1
chứng minh : \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là một số hữu tỉ
giúp mình nhanh nha
cảm ơn nhưng xin ko hậu tạ !!!!!!!!!!!!!!!!1
Cho m,n \(\in \)Z+ không là số chính phương a,b là số hữu tỉ sao cho \(a\sqrt{m}+b\sqrt{n}\in Q\)
CMR \(a\sqrt{m}+b\sqrt{n}=0\)
Tìm số hữu tỉ a,b thỏa mãn 3/a+b$\sqrt{3}$ - 2/a-b$\sqrt{3}$ = 7-20$\sqrt{3}$
Tìm các số hữu tỉ x để \(\frac{3\sqrt{x}+11}{\sqrt{x}+2}\)là số nguyên