\(S=1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow S=1.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=\left(1+...+3^{96}\right).\left(1+3+9+27\right)=\left(1+...+3^{96}\right).40\)
\(\Rightarrow S⋮40\)