cho điểm m nằm ngoài đường tròn (O;R).Kẻ các tiếp tuyến MA,MB với đường tròn (O) (A,B là các tiếp điểm ).Vẽ đường kính AD của đường tròn(O).Gọi H là giao điểm của MO và AB.
a/Chứng minh rằng :MO vuông góc AB tại H
b/Cho biết R = 15 cm và MO = 25 cm .Tính độ dài đoạn OH.
c/ Gọi G là giao điểm của BD và AM .Chứng minh :AM = MG.
d/ Gọi I là giao điểm của tia OM và đường tròn (O). Chứng minh I là tâm đường tròn nội tiếp tam giác MAB . Tính độ dài đoạn thẳng BD theo R ,r với r là bán kính của đường tròn nội tiếp tam giác MAB.
Cho đường tròn tâm o và điểm m nằm ngoài đường tròn kẻ các tiếp tuyến ma,mb a,CMR bốn điểm ABMO cùng nằm trên 1 đg tròn b, CMR ab vuông góc ôm c, CMR ao.am=mo.ah d,CMR mo là tiếp tuyến của đường tròn tâm b bán kính bh
Cho (O;R) và M sao cho OM =3R . Vẽ tiếp tuyến MA,MB và đường kính AB của (O) . C là giao điểm của MD với (O) , H là giao điểm của MO và AB .
a) Chứng minh tứ giác MAOB nội tiếp
b) Cm: MB^2 =MC.MD
c) Gọi K là giao điểm của MD và AB , I kaf trung điểm CD . Cm MI.MK = MC.MD suy ra 2/ MK = 1/MC+1/MD
d) Kéo dài BC cắt MO tại N . Tính diện tích tam giác AMN theo R
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Chứng minh tứ giác MAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và ME biết OM = 5cm và R = 3cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng góc MEC = góc OED
Cho (O), bán kính R và 1 điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm), tia Mx nằm giữa MA và MO, cắt (O) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH ⊥ MO tại H.
a) Tính ∠MAO
b) Tính OH.OM theo R
c) C/m: M,A,I,O thuộc 1 đường tròn
d) Gọi K là giao điểm của OI và HA. Chứng minh KC là tiếp tuyến của đường tròn (O), bán kính R
Mn giúp mik với ạ, mai mình nộp bài rồi
Cho nửa đường tròn (O;R) đường kính AB. Vẽ 2 tiếp tuyến Ax, By với nửa đường tròn đó. Trên tia Ax lấy điểm M sáo cho AM>R. từ M kẻ tiếp tuyến MC với nửa đường tròn (O) (C là tiếp điểm). Tia MC cắt By tại D
a, CM: MD=MA+BD và tam giác OMD vuông
b, Cho AM=2R Tính BD và chu vi tứ giác ABDM
c, Tia AC cắt tia By tại K. Chứng minh OK vuông góc với BM
Cho dg tròn tâm O ĐIỂM M năng ngoài đường tròn kẻ tiếp tuyến MA MB với đường tròn a CM i là Trung điểm AB ( với i là giao điểm của MO và AB) b CM OI = 1 phần 2 AD tính OI khi AD = 6cm với BD là đường kính đường tròn tâm O
cho đường tròn tâm (o) từ điểm M nằm ngoài đường tròn kẻ hai tiếp tuyến MA,MB với đườn tròn (o)(A và B là hai tiếp tuyến).Gọi I là giao điểm của OM và AB; từ B kẻ đườn kính BC của đường tròn(o),đường thẳng MC cắt đường tròn (o) tai D (D khác C)
a)Chứng minh:4 điểm M,A,O,B cùng thuộc một đường tròn
b)Chứng minh:OM vuông với AB và MD.MC=MI.MO
c)Qua O vẽ đường thẳng vuông góc với MC tại E và cắt đường thẳng BA tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O)