1. Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt BC tại D. Trên AC lấy K sao cho AK = AB. So sánh BD, DC. 2. Cho tam giác ABC cân tại A. Trên tia đối của tia CB lấy N. Chứng minh AN > AB
Cho ▲ABC vuông tại A, BD là tia phân giác của góc B (D ∈ AC). Từ D kẻ DH vuông góc vời BC (H ∈ BC).
a) Chứng minh DA = DH
b) Tia HD cắt BA tại K, chứng minh ▲KDC cân
c) Chứng minh DC > DA
Cho ▲ABC vuông tại A, BD là tia phân giác của góc B (D ∈ AC). Từ D kẻ DH vuông góc vời BC (H ∈ BC).
a) Chứng minh DA = DH
b) Tia HD cắt BA tại K, chứng minh ▲KDC cân
c) Chứng minh DC > DA
Cho tam giác ABC vuông tại A , tia phân giác góc B cắt AC ở D . So sánh độ dài BD , DC
Bài 1: Cho tg ABC cân tại A, vẽ phía ngoài các tg đều ABE, ACD.
a. cm: tg BCD= tg CBE
b. Kẻ đg cao AH của tg ABC. cm: EC, BD, AH cùng đi qua 1 điểm
c. cm: ED // BC
Bài 2: Cho tg cân ABC (AB=AC), trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE
a. cm: Tg ADE là tg cân
b. Gọi M là trung điểm BC. cm: AM là phân giác của góc DAE
c. Từ B và C, kẻ BH vg góc với AD và vg góc với AE. cm: BH = CK
d. cm: HK // DE
e. cm: 3 đg thẳng AM, BH và gặp nhau tại 1 điểm
Bài 3: Cho tg ABC, các trung tuyến BE và CD. Trên tia đối tia EB, lấy I sao cho EI = EB. Trên tia đối tia D, lấy K sao cho DC = DK
a. cm: A là trung điểm của KI
b. Cho BK và CI cắt nhau tại F. cm: BI, CK, FA đồng quy tại G
c. Cho FA và BC cắt nhau tại P. cm: GP = 1/4 GF
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên BC lấy E sao cho AB = AE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD với FC. CMR:
a) Tam giác ABD = Tam giác EBD và DE vuông góc BC
b) BD là đường trung trực của đoạn thẳng AE
c) Ba điểm D; E; F thẳng hàng
d) Điểm D cách đều ba cạnh của tam giác AEI
cho tam giác tam giác abc có a=90 độ bd là phân giác của góc b d thuộc ac trên bc lấy điểm e sao cho ab=be
a chứng minh da=de
b __________ae vuông góc bd
c___________góc edc=góc abc
d___________nếu tam giác abc =60 độ thì ae=ce
e___________trên tia đối tia ab lấy i sao cho ai=ec chứng minh bd đi qua trung điểm ic
1 . Cho TG ( tam giác) ABC vuông tại A, đg phân giác BD. Kẻ DE vuông góc BC . Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Cm
a. TG ABD = EBD
b. BD là đg trung trực của đoạn thẳng AE
c. AD < DC
d. Góc ADF = góc EDC và E, D, F thẳng hàng
2. Cho TG ABD vuông tại A. các tia phân giác của góc B và C cắt nhau tại I. Kẻ IH vuông góc với BC. Bt HI =1 cm, HB =2 cm, HC =3 cm. Tính chu vi TG ABC