a.Áp dụng tính chất tổng 3 góc trong 1 tam giác ta có:
góc A+góc B+góc C=180
hay 90 +góc B+30=180
góc B=60 độ
Xét tgiac ABH và tgiac ADH có:
AH chung
góc AHB =góc AHD=90
HB=HD(gt)
Vậy tgiac ABH=tgiac ADH(c.g.c)
=> AB=AD(2 cạnh tương ứng)
=>tgiac ABD cân tại A mà có góc B=60 độ
Vậy tgiac ABD đều
b.tgiac ABD đều => góc BAD=60 độ
vậy ta có góc BAD+góc DAC=90
hay 60+góc DAC=90
góc DAC=30 độ
Xét tgiac ADC có góc DAC=góc DCA=30
Vậy tgiac ADC cân tại D=> AD=DC
Xét tgiacADH và tgiac CDE có
góc DEC=góc DHA=90
AD=CD(cmt)
góc CDE=góc ADH(đối đỉnh)
=> tgiac ADH=tgiac CDE(ch-gc)
=> AH= CE(2 cạnh tương ứng)
c.theo câu b ta có DE=DH(2 cạnh tương ứng)
Vậy tgiac DEH cân tại E
=> góc DEH=(180-góc EDH):2 (1)
tgiac DAC cân tại D
=> góc DAC=(180-góc ADC):2 (2)
mà gócADC=gócEDH(đối đỉnh) (3)
từ (1);(2) và (3) ta có góc DEH=góc DAC
mà góc DAC và góc DEH ở vị trí so le trong
Nên theo tiên đề oclit ta có HE//AC