Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao của AB và DC.
a) Chứng minh rằng:
b) Chứng minh rằng
c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng đều
d) Chứng minh rằng IA là phân giác của góc DIE
Cho tam giác ABC cân tại a.kẻ BD vuông góc với AC(D thuộc AC)CE vuông góc với AB(E thuộc AB) A)Chứng minh tam giác ABD = tam giác ACE B) Gọi I là giao điểm của BD và CE,H là giao điểm của AI và BC.Chứng minh AI là tia phân giác của góc BAC và AH vuông góc với BC C)Lấy điểm M không thuộc nửa mặt phẳng bờ BC không chứa A sao cho MB = MC.Chứng minh A,I,M thẳng hàng
Cho tam giác abc có đường cao ah vẽ ra ngoài tam giác ấy các tam giác ấy các tam giác vuông cân abd và ace cân tại b và c
A) Qua điểm C vẽ đường thẳng vuông góc với BE cắt HA tại K , CMR DC vuông góc với BK
B) CMR : 3 đường thẳng AH,BE và CD đồng qui
bài 9 cho tam giác ABC cân tại A . Điểm D thuộc AB ; điểm E thuộc AC sao cho AD = AE . Gọi F là giao điểm của BE và CD . Chứng minh rằng :a)BE= CD VÀ góc ABE = góc ACD b) tam giác FBC là tâm giác cân .c) tam giác FBD=tam giác FCE. d) AF là tia phân giác của góc A . e) kéo dài AF cắt BC tại M.Tam giác AMC là tam giác gì ? vì sao?
Cho ΔABC nhọn. Về phía ngoài ΔABC, vẽ các tam giác đều ABD và ACE
a) Chứng minh ΔADC = ΔABE
b) Gọi I là giai điểm của BE và CD. Tính số đo góc BIC
c) Gọi M và N lần lượt là trung điểm CD và BE. Chứng minh ΔAMN đều
Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) Tam giác BDE là tam giác cân
c) Góc EIC = 60 độ và IA là tia phân giác của góc DIE
Cho tam giác ABC vuông tại A, có B=60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D . Kẻ DE vuông góc với BC (EeBC) a. Chứng minh tam giác ABD= tam giác EBD b). Chứng minh tam giác ABE là tam giác đều c). Chứng minh tam giác AEC cân d). Chứng minh độ dài cạnh AC a. Chứng minh: ABD = EBD. b. Chứng minh: ABE là tam giác đều. c. Tính độ dài cạnh BC. d. Trên tia đối của tia AB lấy điiểm M sao cho AM = AB. Chứng minh : E,M,D thẳng hàng
Bài 16: Cho tam giác ABC cân tại A . Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
Chứng minh tam giacs ABD = tam giacs ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh tam giác ADE cân.
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AE = BE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABD = Tam giác EBD
b) DE vuông góc với BC
c) BD là trung trực của đoạn thẳng AE
d) Ba điểm D , E , F thẳng hàng
e) Điểm D cách đều ba cạnh của tam giác AEI