Cho tam giác ABC vuông ở A. Trên cạnh AC lấy 1 điểm M, dựng đường tròn tâm (O) có đường kính MC. Đường thẳng BM cắt đường tròn tâm (O) tại D, đường thẳng AD cắt đường tròn tâm (O) tại S.
1) Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA là tia phân giác của góc BCS
2) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh các đường thẳng BA, EM, CD đồng quy.
3) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE.
giải chi tiết giúp mình với ạ!!
cho tam giác ABC nội tiếp đường tròn tâm (o), đường kính AB=2R trên cạnh BC lấy điểm M ( M khác B và C) đường thẳng AM cắt đường tròn O tại D, đường thẳng BD cắt AC tại E đường tròn tâm I ngoại tiếp tam giác MDB cắt đường kính ad tại điểm thứ hai là N
1) chứng minh tứ giác CEDM nội tiếp đường tròn và 3 điểm E,M,N thẳng hàng
2)cho đoạn thẳng CN cắt đường tròn(i) ở F .cmr : DF//AE
Cho tam giác ABC vuông tại A có AB > AC. Điểm M thuộc cạnh AB. Đường tròn tâm O đường kính BM cắt BC tại N
a, AMNC là tứ giác nội tiếp
b, \(\dfrac{BM}{BN}=\dfrac{MC}{NA}\)
c, Đường tròn ngoại tiếp tam giác AON cắt CM tại P. chứng minh rằng đoạn thẳng OP có độ dài không đổi khi M di động trên cạnh AB
Cho tam giác ABC vuông tại A, AB < AC. LẤy điểm I thuộc cạnh AC sao cho góc ABI bằng góc ACB. Đường tròn (O) đường kính IC cắt BI tại D và cắt BC Tại M. Chứng mình rằng
a) Tứ giác ABCD nội tếp
b) CI là tia phân giác của góc DCM
c) DA là tiếp tuyến của đường tròn (O)
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O (AB < AC), đường cao AH cắt đường tròn O tại điểm thứ 2 mà M. Kẻ đường kính AD của (O). Chứng minh rằng:
a. AM vuông góc MD
b. Tam giác ABH đồng dạng với tam giác ADC. Từ đó suy ra BM = DC
c. Tứ giác BMDC là hình thang cân
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh : tứ giác AEHF, BFEC nội tiếp đường tròn
b) Đường thẳng AO cắt đưởng tròn tâm O tại K khác điểm A . Gọi I là giao điểm của 2 đường thẳng HK và BC . Chứng minh I là trung điểm của đoạn BC
c) Tính : AH/AD + BH/BE + CH/CF
\(\rightarrow\) Gấp Ạ!
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh : tứ giác AEHF, BFEC nội tiếp đường tròn
b) Đường thẳng AO cắt đưởng tròn tâm O tại K khác điểm A . Gọi I là giao điểm của 2 đường thẳng HK và BC . Chứng minh I là trung điểm của đoạn BC
c) Tính : AH/AD + BH/BE + CH/CF ( bỎ QUA phần này cũng đc ạ )
Cho đường tròn ( O ) , đường kính AB. Trên ( O ) lấy điểm C sao cho AC < BC. Trên đoạn thẳng OB lấy điểm I cố định (I khác O, B). Đường thẳng đi qua I vuông góc với AB cắt BC tại E, cắt AC tại F.
a) Chứng minh rằng: ACEI là tứ giác nội tiếp
b) Gọi M là giao điểm của đường tròn ngoại tiếp tam giác AEF với AB (M khác A). Chứng minh rằng tam giác EBM cân
c) Chứng minh rằng khi C di chuyển trên ( O ) thì tâm đường tròn ngoại tiếp tam giác AEF chạy trên một đường tròn cố định
Cho tứ giác ABCD có 2 đỉnh B và C trên nửa đường tròn đường kính AD, tâm O. Hai đường chéo AC và BD cắt tại E. Gọi H là hình chiếu vuông góc từ E kẻ xuống AD và I là trung điểm DE. Cmr:
a) ABEH và DCEH nội tiếp
b) E là tâm đường tròn nội tiếp tam giác BCH
c) 5 điểm B,C,I,O,H thuộc đường tròn