1: ΔNMQ vuông tại N
=>\(NM^2+NQ^2=QM^2\)
=>\(NM^2=5^2-3^2=16\)
=>NM=4(cm)
Xét ΔNMQ vuông tại N có
\(sinM=\dfrac{NQ}{MQ}=\dfrac{3}{5}\)
=>\(\widehat{NMQ}\simeq37^0\)
ΔNMQ vuông tại N
=>\(\widehat{NMQ}+\widehat{NQM}=90^0\)
=>\(\widehat{NQM}=90^0-37^0=53^0\)
Xét ΔQMD vuông tại Q có QN là đường cao
nên \(QN^2=NM\cdot ND\)
=>\(ND\cdot4=3^2=9\)
=>ND=2,25(cm)
MQ=MN+ND
=4+2,25
=6,25(cm)
ΔMQD vuông tại Q
=>\(MQ^2+QD^2=MD^2\)
=>\(QD^2=6,25^2-5^2=14,0625\)
=>QD=3,75(cm)
3: ΔQMN vuông tại N có NE là đường cao
nên \(QE\cdot QM=QN^2\left(1\right)\)
Xét ΔQND vuông tại N có NF là đường cao
nên \(QF\cdot QD=QN^2\left(2\right)\)
Từ (1) và (2) suy ra \(QE\cdot QM=QF\cdot QD\)
b:
Xét ΔNQD vuông tại N có NF là đường cao
nên \(NF\cdot QD=NQ\cdot ND;DF\cdot FQ=NF^2\)
=>\(NF=\dfrac{3\cdot2.25}{3.75}=1,8\left(cm\right)\)
Xét ΔMNQ vuông tại N có NE là đường cao
nên \(NE^2=EM\cdot EQ;NE\cdot MQ=NQ\cdot NM\)
=>\(NE\cdot5=3\cdot4=12\)
=>NE=2,4(cm)
\(ME\cdot EQ+DF\cdot FQ\)
\(=NE^2+NF^2\)
\(=2,4^2+1,8^2=9\)