a: góc ABK=góc ACK=1/2*180=90 độ
=>BH//CK và CH//BK
=>BHCK là hình bình hành
b: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
Xét ΔKAH có KM/KH=KO/KA=1/2
nên OM/AH=1/2
a: góc ABK=góc ACK=1/2*180=90 độ
=>BH//CK và CH//BK
=>BHCK là hình bình hành
b: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
Xét ΔKAH có KM/KH=KO/KA=1/2
nên OM/AH=1/2
Cho tam giác ABC nội tiếp (O), đường cao AD, BE, CF, trực tâm H. M là trung điểm BC. Kẻ đường kính AP của (O).
a) Chứng minh: BHCP là hình bình hành.
b) Tia MH cắt (O) tại T, chứng minh: T, A, E, H, F đồng viên (nghĩa là cùng thuộc một đường tròn).
c) Chứng minh: AH=2OM
d) G là trọng tâm tam giác ABC, chứng minh: O, G, H thẳng hàng
Mọi người giúp em với e cần gấp ạ,mà mọi người chủ yếu làm cho em câu B thôi nha vì mấy câu còn lại em biết làm rồi (Câu B nếu dùng tứ giác nội tiếp thì cũng được nhưng mà mọi người làm được cách khác thì tốt nha ).Hình vẽ với gợi ý em để ở dưới ạ
GIẢ TAM GIÁC OBMC/M TỨ GIÁC OBAC LÀ HÌNH THOIC/M MC LÀ ĐƯỜNG TIẾP TUYỀN CỦA DƯỜNG TRÒN O
Cho tam giác nhọn ABC nội tiếp đường tròn (O) (AB<AC).Gọi H là trực tâm, gọi M là giao điểm của AH với đường tròn (O). Vẽ đường kính AK của (O)
a)Chứng minh tứ giác BHCK là hình bình hành
ai giúp mik vs
cho nửa đưởng tròn tâm o đường kính ab. lấy điểm d trên bán kính ob (khác O,B). gọi h là trung điểm của ad.đường vuông góc tại h với ab cắt nửa đường tròn tại c. đường tròn tâm i đường kính bd cắt tiếp bc tại e a) tứ giác acde là hình gì ? b)c/m tam giác ceh cân tại h và he là tiếp tuyến của (I)
Bài 5: (3,0 điểm). Cho tam giác ABC nhọn nội tiếp đừng tròn tâm O. Các đường cao AD, BE và CF cắt
nhau tại H. Đường thẳng EF cắt đường tròn ở I và K. Chứng minh:
a) Tứ giác BCEF nội tiếp.
b) AE.AC = AF.AB.
c) AI = AK.
câu C the nao ạ? cám ơn mọi nguoi
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Dường cao BE; CF cắt nhau tại H
a) Vẽ hình
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF. Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .