Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Khánh Duy

Cho tam giác nhọn ABC. Từ B và C kẻ các đường cao BE và CF (E thuộc AC; F thuộc AB). Chứng cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của tia MH lấy điểm D sao cho MH=MD

a) Chứng minh: Tam giác BHM = Tam giác CDM. Từ đó suy ra DC vuông góc với AC

b) Từ H kẻ HI vuông góc với BC (I thuộc BC). Chứng minh 3 điểm A, H, I thẳng hàng

c) Trên tia đối của tia IH lấy điểm K sao cho IH=IK. Chứng minh DK song song với BC

Cuc Pham
20 tháng 6 2020 lúc 21:16

a) Xét △BHM và △CDM có :

HM = HD ( gt )

BM = MC ( gt )

góc HMB = góc CMD ( đối đỉnh )

⇒ △BMH = △CDM ( c.g.c )

⇒ góc HBM = góc MDC ( 2 góc tương ứng )

mà 2 góc này ở vị trí đồng vị

⇒ BE // DC ⇒ góc BEC = góc ECD ( đồng vị ) ( = \(90^0\) )

⇒ DC ⊥ AC

b) △ABC có : BE và CF là 2 đường cao

mà hai cạnh này cắt nhau tại H ⇒ H là trực tâm

⇒ AI là đường cao còn lại

⇒ A , H , I thẳng hàng


Các câu hỏi tương tự
Đặng Khánh Duy
Xem chi tiết
thảo my
Xem chi tiết
crewmate
Xem chi tiết
Nguyễn Đạt
Xem chi tiết
crewmate
Xem chi tiết
Như Gia
Xem chi tiết
Nguyễn đức đạt
Xem chi tiết
Trần Ngọc Danh
Xem chi tiết
Phạm Thị Hương
Xem chi tiết