Cho ΔABC vuông tại A, đường cao AH. Cho biết AB = 12cm, AC = 16cm
a) Giải tam giác ABC vuông ABC
b) Gọi E, F lần lượt là hình chiếu của H trên AB và AC ( E ∈ AB, F ∈ AC). Chứng minh: \(\dfrac{AF}{CH}=\dfrac{BF}{AC}\)
c) Cho BC cố định, tìm vị trí của A để diện tích hình chữ nhật AEHF lớn nhất
cho tam giác abc vuông tại a đường cao ah gọi EF lần lượt là hình chiếu của h trên ab , ac CMR tanc : 2 bằng ab:ac cộng bc Giup e vs ạ
cho tam giác abc vuông tại a đường cao ah gọi EF lần lượt là hình chiếu của h trên ab , ac CMR tanc : 2 bằng ab:ac cộng bc Giup e vs ạ
cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E là hình chiếu vuông góc của H trên AB,AC. Tính số đo các góc của tam giác HDE. Biết \(\dfrac{DE}{BC}\)\(=\dfrac{\sqrt{3}}{4}\)
Cho tam giác nhọn ABC có AB < AC và đường cao AH. Gọi D và E lần lượt là trung điểm AB và AC.
a) Chứng minh rằng DE là tiếp tuyến chung của hai đường tròn ngoại tiếp hai tam giác DHB và ECH.
b) Gọi F là giao điểm thứ hai của hai đường tròn ngoại tiếp hai tam giác DHB và ECH. Chứng minh rằng HF đi qua trung điểm của DE.
c) đường tròn ngoại tiếp hai tam giác ADE đi qua F.
Cho tam giác ABC có góc B=1200; BC=12cm; AB=6cm, đường phân giác BD
a) Tính BD
b) Gọi M là trung điểm của BC. C/m: AM vuông góc CD
c) Kẻ AH vuông góc đường thẳng BC(H thuộc đường thẳng BC). Tính tỉ số lượng giác của góc HAB, từ đó suy ra tỉ số lượng giác của góc ABH
Cho tam giác ABC vuông tại A đường cao AH .Gọi D.E lần lượt là hình chiếu của H trên cạnh AB và AC .Biết BH =4cm , HC=9cm a) tính AB, AC, AH, DE b) AD.AB= AE.AC
cho tam giác abc đường cao AH.Gọi D.,E theo thứ tự là hình chiếu của H trên AB,BC.Các đường thẳng vuông góc với DE tại D và E cắt BC theo thứ tự tại M và N.
a)cm:M là trung điểm BH,N là trung điểm HC
B)cho BH=4cm,CH=9cm.Tính diện tích DENM
cho tam giác ABC, AH là đường cao, AM là phân giác. AB=15cm,BC=25cm,AC=20cm a. chứng minh tam giác ABC vuông b.tính AH,BH,CH c. tính MB,MB