a) Xét ΔAEC và ΔADB có:
\(\widehat{AEC}=\widehat{ADB}\left(=90^o\right)\)
\(\widehat{EAC}=\widehat{DAB}\) (góc A chung)
⇒ ΔAEC ∼ ΔADB (g.g)
⇒ \(\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AC.AD\left(đpcm\right)\)
b) Kẻ HF vuông góc BC. Ta có:
ΔBHF ∼ ΔBDC
⇒ \(\frac{BF}{BD}=\frac{BH}{BC}\Rightarrow BF.BC=BD.BH\)
ΔCFH ∼ ΔCEB
⇒ \(\frac{CF}{CE}=\frac{CH}{CB}\Rightarrow CF.BC=CE.CH\)
Do đó: BC2 = BF.BC + CF.BC = BD.BH = CE.CH