a: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
=>ABNC là hình bình hành
=>AB=NC
b: Xét tứ giác CEBF có
CE//FB
CE=FB
=>CEBF là hình bình hành
=>CB cắt EF tại trung điểm của mỗi đường
=>F,M,E thẳng hàng
a: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
=>ABNC là hình bình hành
=>AB=NC
b: Xét tứ giác CEBF có
CE//FB
CE=FB
=>CEBF là hình bình hành
=>CB cắt EF tại trung điểm của mỗi đường
=>F,M,E thẳng hàng
cho tam giác abc cân tại a.Trên tia đối của tia AB lấy M,trên tia đối của tia AC lấy điểm N sao cho AM =AN
a)cm TG BCNM là HTC
b) gọi E là tđ của BC,F là TĐ của MN.Cm A E F thẳng hàng
Cho tam giác ABC cân tại A lấy điểm D bất kì trên cạnh AB,lấy điểm E trên tia đối của CA.Sao cho CE=BD.Từ điểm D kẻ đường thẳng song song với AC cắt BC tại F a)C/M ∆DBF cân b)C/m DCEF là hình bình hành
cho tam giác abc cân tại A,lấy điểm D bất kỳ trên AB, lấy điểm E trên tia đối của tia CA sao cho CE=BD. từ D kẻ đường thẳng song song với AC cắt BC tại F
1.tam giác DBF là tam giác j?
2.c/m DCEF là hình bình hành?
1. Cho hình thang cân ABCD có AB || CD, AB= 3 cm, CD=6 cm, AD=2,5 cm. Gọi M, N lần lượt là hình chiếu của A, B trên đường thẳng CD. Tính độ dài các đoạn thẳng DM, DN, AM.
2. Cho tam giác ABC cân tại A. Lấy điểm M, N lần lượt trên cạnh AB, AC sao cho
AM = AN.
a) Chứng minh tứ giác BMNC là hình thang cân.
b) Xác định vị trí các điểm M, N để BM=MN=NC.
3. Cho tứ giác ABCD có C = D và AD = BC. Chứng minh tứ giác ABCD là hình thang cân.
cho tam giác ABC có 3 góc nhọn ( AB<AC) . Các đường cao BE , CF cắt nhau tại H . Gọi M là trung điểm của BC . trên tia đối của MH lấy điểm k sao cho HM = MK
a) Chứng minh tứ giác BHCK là Hình bình hành
b) Chứng minh BK ⊥ AB , và CK ⊥ AC
c) gọi I là điểm đối xứng của H qua BC . Chứng minh tứ giác BIKC là hình thang cân
giúp mình vẽ hình và gải bài hình với
mình đg cần gấp để mai kiểm tra cảm ơn mọi người rất nhiều
Cho tam giác ABC có D. E lần lượt là trung điểm của AB; AC. Trên tia đối của tia ED lấy điểm F sao cho EF = DE. Chứng minh:
a. AD = FC; b. DF // BC c. DE // BC và DE = 1/2BC
( câu b bài 2 có thể sử dụng nhận xét hình thang có hai cạnh đáy bằng nhau
Cho hình thang cân ABCD ( AB // CD và AB < CD ). AC cắt BD tại O. Trên tia đối của tia DC lấy điểm E sao cho ED = AB. Gọi M, N thứ tự là trung điểm của AB và CD.
a/ Chứng minh ∆AEC cân.
b/ Chứng minh M, O, N thẳng hàng.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
giúp mik vs ạ mik cho 5 sao
Cho tam giác ABC cân tại A. Trên tia đối của AC lấy điểm D, trên tia đối đó của AB lấy điểm E sao cho AD = AE, chứng minh tứ giác BDEC là hình thang cân