a, Xét \(\Delta AIB\) và \(\Delta AKC\) có
\(\widehat{AIB}\) = \(\widehat{AKC}\) ( = \(90^o\) )
\(\widehat{A}\) chung
\(\Rightarrow\) \(\Delta AIB\) \(\sim\) \(\Delta AKC\) ( g - g )
a, Xét \(\Delta AIB\) và \(\Delta AKC\) có
\(\widehat{AIB}\) = \(\widehat{AKC}\) ( = \(90^o\) )
\(\widehat{A}\) chung
\(\Rightarrow\) \(\Delta AIB\) \(\sim\) \(\Delta AKC\) ( g - g )
cho tam giác abc nhọn các đường cao ad và be cắt nhau tại h. qua a kẻ đường thẳng song song với bc, qua b kẻ đường thảng song song với ad, chứng cắt nhau tại m. a) tứ giác ambd là hình gì? chứng minh b) chứng minh tam giác ahe đồng dạng với tam giác bec, tam giác dec đồng dạng với tam giác abc
Cho tam giác nhọn ABC Các đường cao AD, BE, CF cắt nhau tại H chứng minh rằng: a) Tâm giáo AEF đồng dạng với tam giác ABC b) BH.BE + CH.CF = BC^2 c) AD.HD
Cho tam giác ABC nhọn hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh BH.HD = CH.HE
c) Chứng minh Chứng tam giác ADE đồng dạng tam giác ABC
d) Gọi F là giao điểm của AH và BC, K là trung điểm của AH. Chứng minh: BF.CF = KF2 – HD2
(Làm hộ mk ý b nha)
Cho tam giác ABC nhọn, AB>AC có các đường cao AD, BE, CF cắt nhau tại H. Gọi P, Q lần lượt là hình chiếu vuông góc của E và F trên BC. ĐƯờng thẳng qua H vuông góc với AD cắt EP và FQ lần lượt tại M và N.
a) Chứng minh: Tam giác EMH đồng dạng với tam giác CPE.
b) HM.QF=HN.EP
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu: \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu\(AC^2=4BE.HE\)thì tam giác ABC là tam giác cân
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu: \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân