a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
⇒\(\frac{AD}{AE}=\frac{AB}{AC}\)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
⇒\(\frac{AD}{AE}=\frac{AB}{AC}\)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
Cho tam giác ABC vuông tại A có đường cao AH ( H thuộc BC)
a) Chứng minh : tam giác ABH đồng dạng tam giác CBA sau đó suy ra AB2= BH.BC
b) Chứng minh AH2=BH.CH
C) Gọi M là trung điểm của BH, kẻ CK vuông góc với AM tại K, CK cắt AH tại I. Chứng minh IA=IH
Cho tam giác ABC nhọn (AB<AC) vẽ hai đường cao BD , CE.
a) Chứng minh : tam giác ABD đồng dạng tam giác ACE suy ra AD.AC=AB.AE
b) Chứng minh : tam giác ADE đồng dạng tam giác ABC
c) Tia DE cắt CD tại I. Chứng minh IB.IC = IE.ID
Câu 6 (3 điểm) Cho tam giác ABC nhọn có AB < AC. Kẻ 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DABE ∽ DACF và AE. AC = AF. AB
b) Kẻ AH cắt BC tại D. Chứng minh AD vuông góc BC và góc ADF bằng góc ABH
cho tam giác ABC vuông tại A. kẻ đường cao AH. Biết AB=15cm, AC=20cm.
a) chứng minh tam giác AHB và tam giác CAB là hai tam giác đồng dạng
b) tính BC, AH
c) gọi M là trung điểm cạch BC. tính diện tích tam gác AHM.
bài 5 cho tam giác ABC vuông tại A. kẻ đường cao AH. Biết AB=15cm, AC=20cm
a) Chứng minh tam giác AHB và tam giác CAB là hai tam giác đồng dạng
b) Tính BC, AH.
C) Gọi M là trung điểm cạnh BC. Tính diện tích tam giác AHM.
Mn ơi giúp em bài này để em kiểm tra cuối kì 2 với ạ:Cho tam giác cân ABC cân tại A kẻ các đường cao BH, CK(H € AC, K€ AB) a, cho BC=5cm, BK= 3cm tính diện tích tam giác BKC b, chứng minh tam giác BKC đồng dạng với tam giác BHC em cảm ơn mn đã giúp em ạ
Bài 6: Cho ΔABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Từ M lần lượt kẻ MH
vuông góc với AB tại H, MK vuông góc với AC tại K.
a) Chứng minh tứ giác AKMH là hình chữ nhật
b) Gọi N là điểm đối xứng của M qua K. Chứng minh tứ giác AMCN là hình thoi
c) Gọi P là hình chiếu của H lên AM; O, E, Q lần lượt là trung điểm của HP, PM và
AK. Chứng minh: HE vuông góc với EQ
cho ∆ABC nhọn, vẽ 3 đường cao BD,CE,AK cắt nhau tại I
a/ chứng minh ∆ADB đồng dạng ∆AEC
b/ chứng minh ∆EIB đồng dạng ∆DIC
c/ gọi J là giao điểm của DE và BC, lấy điểm M thuộc AK sao cho EM song song AC và cắt Ạ tại N, chứng minh EN bằng EM