Cho tam giác ABC nhọn nội tiếp (O), 2 đg cao BE,CF cắt nhau tại H. Kẻ đk AD của (O).Qua H kẻ đg d vuông góc AO tại K, d cắt AB,AC,BC tại M,N,S.
a)C/m A,E,F,K,H cùng e 1 đg tròn
b)C/m BCMN nội tiếp và SM.SN= SB.SC.
c) AH cắt (O) tại Q. C/m SQ^2 = SM.SN
d)C/m SI vuông góc OI.
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
cho tam giác ABC (AC<BC) nội tiếp đg tròn tâm O đg kính AB. kẻ CH vuông góc với AB(H thuộc AB). trên cung nhỏ BC lấy điểm E bất kì, gọi giao điểm của AE với CH là F
1, chứng minh tứ giác HFEB nội tiếp đg tròn
2, chứng minh AC2 = AE.AF
3, gọi I là giao điểm của BC với AE,K là hình chiếu vuông góc của I trên AB tìm vị trí điểm E trên cung nhỉ BC để KE + KC đạt giá trị lớn nhất
Cho (O) đk AB. C e OB và H là trđ AC. Qua H kẻ dây DE vuông góc với AC. BD cắt đg tròn đk BC tại D.
a) C/m DHCK nt
b) C/m E,C,K thẳng hàng
c) Qua K kẻ đg vuông góc DE cắt (O) tại M,N. M e cung DE nhỏ. C/m EM^2 + DN^2 = 4R^2
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
cho ΔABC nhọn có AB < AC nội tiếp (O;R), các đường cao BE, CF cắt nhau tại H
a) C/m tứ giác BFEC nội tiếp
b) Gọi I là trung điểm của BC, K là điểm đối xứng với H qua I. C/m AK⊥EF
Cho tam giác ABC, AB<AC có 3 góc nhọn nội tiếp đường tròn (O), gọi I là tâm đường tròn nội tiếp, tia AI cắt (O) tại D, AD cắt BC tại J
a) DI2=DJ.DA
b) Kẻ đường kính DE của (O), đường thẳng AE cắt BI và CI lần lượt tại F và H. C/m E là trung điểm FH.
c) Lấy điểm K thuộc cung nhỏ BC của đường tròn (O), M là điểm đối xứng của I qua K, N là giao điểm của BH và CF. C/m H,F,M,N thuộc 1 đường tròn
Cho tam giác ABC nhọn nội tiếp đường tròn (O) đường kính AD. Tiếp tuyến tại D cắt đường thẳng BC tại P, đường thẳng PO cắt đường thẳng AC tại M và cắt đường thẳng AB tại N. Gọi I là trung điểm của đoạn thẳng BC. Qua C vẽ đường thẳng song song với đường thẳng MN cắt đường thẳng AD tại E và cắt đường thẳng AB tại Q. Chứng minh rằng: a) Bốn điểm P, O, I, D cùng nằm trên một đường tròn. b) EIP = EDC . c) O là trung điểm của đoạn thẳng MN
Trên một đg thẳng lấy ba điểm A, B ,C cố định theo thứ tự âý gọi O là đg tròn tâm O thấy đổi nhưng luôn luôn đi qua A và B.Vẽ đg kính IJ vuông góc với AB tại E, E là giao điểm của IJ VÀ AB.Goi M,N theo thứ tự là giao điểm của CI và CJ với (O) ( M#I, N# J) a) C/m IN, IM và CE cắt nhau tại một điểm D b) Gọi F là trung điểm của CD.C/m OF vuông góc với MN c) C/m FM , FN là hai tiếp tuyến của dsg tròn tâm O d) C/m EA.EB= EC.ED .Em có nhận xét gì về điểm D khi đg tròn (O) thay đổi CÁC BN GIÚP MK NHEA! MK CẦN GẤP LẮM