a: MP=12cm
b: Xét ΔNMD và ΔNED có
NM=NE
\(\widehat{MND}=\widehat{END}\)
ND chung
Do đó:ΔNMD=ΔNED
Suy ra: DM=DE
hay ΔDME cân tại D
a: MP=12cm
b: Xét ΔNMD và ΔNED có
NM=NE
\(\widehat{MND}=\widehat{END}\)
ND chung
Do đó:ΔNMD=ΔNED
Suy ra: DM=DE
hay ΔDME cân tại D
bài 1;cho tam giác abc vuông tại b. tính độ dài ab biết ac=12cm,bc=8cm
bài 2; cho tam giác mnp vuông tại n tính độ dài mn biết mb=căn bậc 30,np=căn bâc 14
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
baif4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
baif5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Cho tam giác MNP cân tại M. Kẻ MK ⊥NP tại K.a)Chứng minh rằng: MKN = MKPb)Giả sử MN= 5cm và NP = 6cm. Tính MK
Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm, BD là tia phân giác của góc B ( D thuộc AC ). Đường thẳng kẻ từ D vuông góc với BC tại E
a) Tính AC
b) Chứng minh: Tam giác ABE cân
c) Trên tia BA lấy điểm F sao cho BF = BC. Chứng minh 3 điểm E, D, F thẳng hàng
Cho tam giác ABC vuông tại A có AB = 3cm; BC = 5cm.
a) Tính độ dài cạnh AC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ACBA = ACDA.
c) Trên cạnh AC lấy điểm E sao cho CE = lem. CMR: EA là tia phân giác của góc BED.
d) ACBD và AEBD là tam giác gì? Vì sao?
e) Tam giác ABC cần có thêm điều kiện gì để tam giác CBD trở thành tam giác đều?
Bài 3: Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy một điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh rằng EB ^ EF.
Bài 5: Cho tam giác ABC có độ dài các cạnh bằng 3cm,4cm,5cm.Chứng minh rằng tam giác ABC vuông.
Bài 6: Cho tam giác ABC có độ dài các cạnh bằng 6cm,8cm,10cm.Chứng minh rằng tam giác ABC vuông.
Bài 7:Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông
Cho ΔMNP,MH⊥NP tại H,MN=3cm MP=4cm NH=1,8cm
a,vẽ hình
b,tính MH,HP
c,Chứng minh ΔMNP là tam giác vuông
Cho tam giác ABC vuông tại A có đường cao AH. Kẻ phân giác AI của góc BAH (I thuộc BC).
a) Chứng minh tam giác AIC cân tại C.
b) Trên tia đối HA lấy D sao cho HA = HD. Chứng minh DI là phân giác của góc BDA.
c) Từ B kẻ đường thẳng vuông góc với ID cắt AD tại N. Chứng minh NI // CD.
Cho AABC Vuông tại A,
a)Tính AC. biết AB=6cm, BC=10cm.
b)Tia phân giác của góc B cắt cạnh AC tại D. Kẻ DE vuông góc BC (E
thuộc BC). Gọi K là giao điểm của tia ED và đường thẳng AB.
Chứng minh: AABD = AEBD.
c/ chứng minh KDC là tam giác cân