Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Gọi M,N là điểm thỏa mãn \(\overrightarrow{MB}+2\overrightarrow{MA}=\overrightarrow{0},\overrightarrow{NC}+2\overrightarrow{NA}=\overrightarrow{0}\).Điểm E thuộc BN sao cho ME vuông góc với BC. Biết rắng góc NBC bằng 45 độ
a) Hay biểu thị \(\overrightarrow{CE}\) qua \(\overrightarrow{CA}\) và \(\overrightarrow{CB}\)
b) Cho E(3;-2) và phương trình đường thẳng CM: 2x+y-9=0. Tìm tọa độ điểm C
cho tam giác ABC vuông tại A và AB=a , \(\widehat{BCA}\) = 30 , gọi D là trung điểm AC và lấy I sao cho ABID là hình chữ nhật
a) gọi K là điểm thuộc đoạn thẳng BC ( khác B, C ) , thỏa mãn \(\overrightarrow{BK}\) = x. \(\overrightarrow{BC}\) . tìm x sao cho 3 điểm A, K , I thẳng hàng
b) tìm tập hợp điểm M thỏa mãn 2MB2 + MC2 -MA2 = 2a2
Cho hình chữ nhật ABCD, cạnh AB = 2, AD = 1. Kẻ AH vuông góc với AB; M là trung điểm của BH, N là trung điểm của CD.
Tích vô hướng của \(\overrightarrow{MN}\left(\overrightarrow{DC}+\overrightarrow{AH}\right)\)bằng:
A. 0
B. 2
C. 3
D. 4
Trong mp Oxy cho tam giác ABC có A(-1;1) B(1;3) và trọng tâm G(-2; -2/3). Tìm M trên Oy sao cho tam giác MBC vuông tại M
Trong mp tọa độ Oxy, cho A(3;0), B(2;4). Gọi D là chân đường phân giác trong góc O của tam giác ABC. Tìm tọa độ của D.
Cho tam giác ABC vuông tại A có AB=a, AC=a\(\sqrt{3}\) và AM là trung tuyến. Tích vô hướng \(\overrightarrow{BA}.\overrightarrow{AM}\)
Cho tam giác ABC có A(2;1) , B(0;1) và C(-1;2) .
Tìm điểm K \(\in\) d: y = 2x-1 để \(\left|\overrightarrow{KA}-\overrightarrow{3KB}\right|\) đạt giá trị nhỏ nhất
Cho tam giác ABC có 3 góc nhọn và \(\widehat{ABC}>\widehat{ACB}\). Đường phân giác trong của góc BAC cắt đoạn BC tại D. Gọi E,F lần lượt là hình chiếu vuông góc của D trên AB và AC. K là giao điểm của CE và BF. Đường thẳng BF cắt đường tròn ngoại tiếp tam giác AEK tại điểm thứ hai là H ( H khác K). Gọi I là giao điểm của hai đường thẳng AK và BC. CM
a) \(IC.EB=IB.FC\)
b) \(DH\perp BF\)
Trong mp xOy, cho hai điểm B(-1;3) C(3;1), Tìm tọa độ điểm A sao cho tam giác ABC vuông cân tại A