a) Cho hình chữ nhật ABCD có cạnh AB=4, BC=6, M là trung điểm của BC, N là điểm trên cạnh CD sao cho ND=3NC. Khi đó bán kính của đường tròn ngoại tiếp tam giác AMN là?
b) Cho tam giác đều ABC; gọi D là điểm thỏa mãn \(\overrightarrow{DC}=2\overrightarrow{BD}\). Gọi R và r lần lượt là bán kính đường tròn ngoại tiếp vs nội tiếp của tam giác ADC. Tính tỉ số \(\dfrac{R}{r}\)
Cho tam giác abc có bc=a ca=b ab=c (b khác c) diện tích s biết b^2+c^2>=2a^2 1) chứng minh 4S/(tanA)>=a^2 2) gọi o g lần lượt là tâm đg tròn ngoại tiếp và trọng tâm tam giác abc M là trung điểm bc chứng minh góc MGO không nhọn
Cho tam giác ABC có BC = a, góc BAC = 60 độ và hai đường trung tuyến BM và CN vuông góc với nhau. Tính diện tích tam giác
Cho tam giác ABC có góc A=120°, AB= 1, AC=2
a) Tính diện tích tam giác ABC
b) Trên tia CA, lấy điểm M sao cho BM=2. Tính độ dài AM
a)Cho tam giác ABC có các trung tuyến \(m_a=15;m_b=12;m_c=9\). Tính diện tích tam giác ABC.
b) Cho tam giác ABC đều cạnh a. Bán kính đường trọn ngoại tiếp tam giác ABC bằng?
c) Cho tam giác ABC đều cạnh 2a. Bán kính đường trọn ngoại tiếp tam giác ABC bằng?
Cho hình thang vuông ABCD có đường cao AB=2a, cạnh đáy AD=a và BC=3a. Gọi M là điểm trên đoạn AC sao cho \(\overrightarrow{AM}=k\overrightarrow{AC}\). Tìm k để \(\overrightarrow{BM}\perp\overrightarrow{CD}\)
Cho tam giác ABC có A(-1;0) , B(4;0) , C(0;m) và m khác 0. Gọi G là trọng tâm của tam giác ABC. Xđ m để tam giác GAB vuông tại G
Giúp em với : bài 1
Tính các cạnh của tam giác ABC biết 2 trung tuyến BM=6,CN=9 hợp với nhau một góc 120 độ. Bài 2. Cho tam giác ABC có BC=6,AB=5 và véctơ BC.VectoBA=24
a) Tính diện tích tam giác ABC và độ dài cạnh AC. B) Tính độ dài trung tuyến BM và cosin của góc nhọn tạo bởi BM và đường cao AH
cho hình chữ nhật ABCD, AB=a, BC=2a. M, N lần lượt là trung điểm AD, CD. I là giao điểm BM và AN. tính diện tích tam giác BNI