a: \(S_{DEF}=\dfrac{EH\cdot DF}{2}=\dfrac{ED\cdot EF}{2}\)
nên \(EH\cdot DF=ED\cdot EF\)
b: \(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(EH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
c: Xét ΔDEF vuông tại E có EH là đường cao
nên \(EF^2=DF\cdot HF\)
d: Xét ΔEHD vuông tại H có HM là đường cao
nên \(EM\cdot ED=EH^2\left(1\right)\)
Xét ΔEHF vuông tại H có HN là đường cao
nên \(EN\cdot EF=EH^2\left(2\right)\)
Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)
hay EM/EF=EN/ED
Xét ΔEMN và ΔEFD có
EM/EF=EN/ED
góc MEN chung
Do đo: ΔEMN đồng dạng với ΔEFD