Cho tam giác ABC cân A . Kẻ phân giác CD (D∈ AB ) . Qua D vẽ đường thẳng vuông góc với CD , cắt BC tại F và CA tại K . Đường thẳng kẻ qua D và song song với BC cắt AC tại E . Phân giác của góc BAC cắt DE tại M . chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau. b) Các tam giác DEC và DEK là các tam giác cân. c) CF BD = 2 . d) MD=1/4 CF .
. Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác của góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác DAE cân
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh tam giác BDF cân tại B.
c) Chứng minh BD = CE.
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC. Gọi giao điểm của đường thẳng này với AB, AC theo thứ tự D, E. Chứng minh rằng DE = BD + CE
Cho tam giác ABC cân ở A. Kẻ BD vuông góc AC, CE vuông góc với AB (D thuộc AC, e thuộc AB ). Gọi I là giao điểm của BD và CE. Chứng minh :
a) BE=CD
b) AI là tia phân giác của góc BAC
Cho tam giác ABC . Các tia phân giác của các góc B và C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D và cắt AC tại E. Chứng minh rằng DE = DB + EC
Cho tam giác ABC có AB=AC. Gọi D là trung điểm cạnh BC, qua A vẽ đường thẳng d song song với BC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD
b, AD là tia phân giác của góc BAC
c, AD vuông góc với đường thằng d
1.Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CB lấy E sao cho BD=CE. Từ D kẻ đường vuông góc với BC cắt AB ở M, từ E kẻ đường vuông góc với BC cắt AC ở N.
a)Chứng minh MD=NE
b) MN và NE cắt DE ở I
c) Từ C kẻ đường vuông góc với AC , từ B kẻ đường vuông góc với AB và chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
Cho tam giác ABC cân tai A. Gọi Ià trung điểm cạnh BC kẻ ID vuông góc AB tại D kẻ IE vuông góc AC tai E
A Chứng minh Tam giác ABI = Tam giác ACI
B Chứng minh Tam giác IDE cân
C Chứng minh DE song song với BC