Do C nằm giữa C và H => HC<HB. =>AC<AB ( qhệ h/c - đg xiên )
=> cos a = AH/AB
cos b=AH/AC
=> cos a< cos b
Do C nằm giữa C và H => HC<HB. =>AC<AB ( qhệ h/c - đg xiên )
=> cos a = AH/AB
cos b=AH/AC
=> cos a< cos b
Cho hai góc nhọn α và β thỏa mãn \(0^o\)<α+β<\(90^0\). Chứng minh: cos(α+β)=cosα.cosβ-sinα.sinβ
a) Cho góc α < 90o có sin α = \(\dfrac{1}{3}\). Tính cos α, tg α, ctg α.
b) Cho góc β < 90o có tan β = 2. Tính sin β, cos β.
Cho tam giác ABC vuông tại A (AB<AC), nếu góc ACB là \(\alpha\), góc AJB là \(\beta\) ( J là trung điểm BC ). CMR:
\(\left(\sin\alpha+\cos\alpha\right)^2=1+\sin\beta\)
Xét hình bs 4 :
Tìm đẳng thức đúng :
(A) \(\cos\alpha=\cos\beta\) (B) \(\cos\alpha=tg\beta\) (C) \(\cos\alpha=cotg\beta\) (D)\(\cos\alpha=\sin\beta\)
a) \(\cos^2\)α+ \(\cos^2\)β + \(\cos^2\)α.\(\sin^2\)β +\(^{ }\sin^2\)α
b) 2(\(\sin\)α - \(\cos\)α)\(^2\) - ( \(\left(\sin\alpha+\cos\alpha\right)^{2^{ }}+\left(\sin\alpha.\cos\alpha\right)\)
c) \(\left(\tan\alpha-\cot\alpha\right)^2-\left(\tan\alpha+\cos\alpha\right)^2\)
\(K=\sin^6\alpha+\cos^6\beta+3.\sin^2\alpha.\cos^2\alpha\)
Xét hình bs 4 :
Tìm đẳng thức đúng :
(A) \(\cos^2\alpha+\sin^2\beta=1\) (B) \(\sin^2\alpha+\cos^2\beta=1\)
(C) \(\sin^2\alpha+\cos^2\alpha=1\) (D) \(\cos^2\alpha+\cos^2\beta=2\)
Tam giác ABC nhọn có BC = a ; đường cao AH ; góc B = alpha ; góc C = beta. Tính độ dài AH theo a, alpha, beta.
Cảm ơn mng rất nhiều ạ!
Biết \(sin\alpha=\dfrac{12}{13};sin\beta=\dfrac{\sqrt{3}}{2}\). Tính các tỉ số lượng giác còn lại của các góc \(\alpha;\beta\)